محصولات
Macromolecules Containing Metal and Metal-Like Elements, Transition Metal-Containing Polymers - Original PDF
Macromolecules Containing Metal and Metal-Like Elements, Transition Metal-Containing Polymers - Original PDF
نویسندگان: Alaa S. Abd-El-Aziz, Charles E. Carraher, Charles U. Pittman, Martel Zeldin خلاصه: Transition metal-containing macromolecules come in a wide variety of structures. While volume 5 of this series dealt with metal coordination polymers, in this book we focus on transition metal-containing polymers where the metal is bonded to at least one organic group through σ- and/or π-bonds. Many of the macromolecules covered in this volume are often referred to as organometallic polymers. The term organometallic compound refers to compounds that contain at least one metal–carbon (M–C) bond, whether the bond is σ or π or some combination of both types of bonding.
Handbook of Industrial Water Soluble Polymers - Original PDF
Handbook of Industrial Water Soluble Polymers - Original PDF
نویسندگان: Peter A. Williams خلاصه: Natural and synthetic water soluble polymers are used in a wide range of familiar industrial and consumer products, including coatings and inks, papers, adhesives, cosmetics and personal care products. They perform a variety of functions without which these products would be significantly more expensive, less effective or both.Written for research, development and formulation chemists, technologists and engineers at graduate level and beyond in the fine and specialty chemicals, polymers, food and pharmaceutical industries, the Handbook of Industrial Water Soluble Polymers deals specifically with the functional properties of both natural and synthetic water soluble polymers. By taking a function based approach, rather than a "polymer specific" approach the book illustrates how polymer structure leads to effect, and shows how different polymer types can be employed to achieve appropriate product properties.
Advances in Radiation Chemistry of Polymers: Iaea Tecdoc - Original PDF
Advances in Radiation Chemistry of Polymers: Iaea Tecdoc - Original PDF
نویسندگان: D. Meisel خلاصه: The meeting on radiation effects on polymers was held at the Radiation Laboratory at theUniversity of Notre Dame to review and discuss advances in the radiation processing ofpolymers. The trends in the basic research, R&D and industrial applications were reported.The scope of more applied uses of irradiation involving polymers ranged from discussions of the curing of materials for dental applications, to the effects on polyolefins (the most broadly used class of polymers prevalent in industrial radiation processing) and to emerging interests in hydrogels, carbon fiber composites, heterogeneous mixtures based on material by-products (scrap plastic and wood fragments), grafted materials and materials for electronic uses. In addition, the emerging interests in the use of recently developed high power x ray systems for industrial use were presented.
Radiation Effects on Polymers for Biological Use - Original PDF
Radiation Effects on Polymers for Biological Use - Original PDF
نویسندگان: Hans Jörg Mathieu, Yann Chevolot خلاصه: Biomaterials repair, reinforce or replace damaged functional parts of the (human) body. All mechanical and biological interactions between an implant and the body occur across the interface, which has to correspond as nearly as possible to its particular function. Much of the progress in adapting polymer materials for use in a biological environment has been obtained through irradiation techniques. For this reason the most recent developments in four key areas are reviewed in this special volume: (1) the analysis of the topology and the elemental composition of a functional surface, (2) the chemical modification of the surface which results in highly pure, sterile and versatile surfaces, (3) the sterilisation of implantable devices via ionising radiation and its possible effects on the structural mechanical properties of polymers, and (4) the radiation effects on living cells and tissues which are of particular importance for radiation protection and radiotherapy.
Crystallization of polymers. Volume 1, Equilibrium concepts - Original PDF
Crystallization of polymers. Volume 1, Equilibrium concepts - Original PDF
نویسندگان: Mandelkern Leo, NetLibrary Inc خلاصه: Polymers of high molecular weight have now been accepted as respectable members of the molecular community. This situation was not always true.(1) It is now recognized, however, that polymer molecules possess the unique structural feature of being composed of a very large number of chain units that are covalently linked together. This property is common to all macromolecules despite their diverse origin, their widely differing chemical and stereochemical structures and uses and function. It is, therefore, possible to study this class of substances from a unified point of view that encompasses the relatively simpler polymers prepared in the laboratory, as well as the more complex ones of nature. The characteristic thermodynamic, hydrodynamic, physical, and mechanical properties possessed by high polymeric substances can be explained, in the main, by their covalent structure and the attendant large size of the individual molecules.
Synthetic Polymers for Biotechnology and Medicine - Original PDF
Synthetic Polymers for Biotechnology and Medicine - Original PDF
نویسندگان: Ruth Freitag خلاصه: One of the most powerful group of chemicals in the body are organic compounds collectively referred to as hormones. The glands responsible for the production and release of hormones comprise the endocrine system. Endocrine activities have been identified in certain organs, such as the heart, kidneys, duodenum, liver and the islets of Langerhans in the pancreas (which contains the insulin gland), which are normally associated with other system functions. There have been numerous attempts to replace organ function using cell transplantation including direct injections of dissociated cells into organs such as the liver, kidney or spleen.1-5 Subcutaneous and intraperitoneal routes have also been evaluated.6-10 More recent investigations have applied extracellular matrix polymers as structural supports for cell transplantation and immunoprotection.11,12 Potential medical applications of such “artificial cells” or “tissue engineered” organoids include an extracorporeal bioartificial liver for detoxification,2 artificial red blood substitutes,13 the extracorporeal artificial kidney for hemodialysis,14 immunosorbents15 and drug delivery systems.16The transplantation of immunoisolated (microencapsulated) cells represents another emerging area in biotechnology research and commercialization. Under such a scenario, the encapsulated cells, which could be a xenograft, would be hidden from the immune system of the body, but would still be able to respond to extracellular stimuli (e.g., blood glucose), with the required hormone, in the case of diabetes therapy insulin, secreted into the systemic circulation. Other applications of the microencapsulation concept include the encapsulation of genetically modified cells, which represents a novel approach to somatic gene therapy.17 This chapter will review recent advances in cell encapsulation from material science, technological and tissue-related perspectives. Cell coating, microencapsulation devices and bioartificial organs will be discussed with the artificial pancreas and treatment of diabetes used as a case study denominator throughout the review.
Nanocomposites of Polymers and Inorganic Particles - Original PDF
Nanocomposites of Polymers and Inorganic Particles - Original PDF
نویسندگان: Caseri W. خلاصه: This chapter deals with composites comprised of polymers and inorganic nanoparticles of rather uniform shape. Such composites are attributed to the class of nanocomposites because of the small size of the embedded particles, while the polymer phase is continuous. The attribution of particles to the class of nanoparticles is somewhat arbitrary; often particles of dimensions up to 50–100 nm are assigned to this notion, and expressions such as nanosized particles, colloids, or, occasionally, ultrafine particles are also used to designate particles as nanoparticles. The small size of the incorporated particles can induce materials properties which differ from those of related composites containing larger particles, for example, as a result of an extremely large interface area, which can readily amount to 107–109 m2 in a cube meter of nanocomposite, or a markedly reduced scattering of visible light. The latter is important if transparent or translucent materials are required for optical applications. This intensity loss of transmitted light by scattering can be estimated with the equation
Polymer Nanocomposite Coatings - Original PDF
Polymer Nanocomposite Coatings - Original PDF
نویسندگان: Vikas Mittal خلاصه: This work explores the use of composite nanotechnology for thin coatings on various substrates. It compiles recent advances in nanocomposite coatings for experienced researchers and provides background information for those new to the field. The book not only explains the synthesis of bulk nanocomposite materials, it describes their application in areas such as the automotive and packaging industries. It explains how nanocomposite coatings provide a gas barrier to the substrate foil or laminate and how the coatings are used to provide properties such as anti-scratch and anti-corrosion.
Adhesives, Sealants, and Coatings for Space and Harsh Environments - Original PDF
Adhesives, Sealants, and Coatings for Space and Harsh Environments - Original PDF
نویسندگان: Lieng-Huang Lee (auth.), Lieng-Huang Lee (eds.) خلاصه: New technologies constantly generate new demands for exotic materials to be used in severe environments. The rapid developments of aerospace industries during the last two decades have required new materials to survive extreme high and low temperatures and various radiations. The exploration of new energy sources, e.g., solar and geothermal, has led us to develop new solar collectors and geothermal devices. Even the search for new oils has demanded that we study the corrosive environment of oil fields. In the telecommunication industries, optical fibers have been adopted broadly to replace metallic conductors. However, none of the optical fibers can survive abrasion or corrosion without the application of a coating material. For microelectronics, protection in terms of coatings and encapsulants is deemed necessary to prevent corrosion. One of the major causes of corrosion has been shown to be water which appears to be abundant in our earthly environments. Water can attack the bulk adhesive (or sealant), the interface, or the adherend. Water can also cause delamination of coating film, and it is definitely the major ingredient in causing cathodic or anodic corrosion. Thus, water becomes the major obstacle in solving durability problems of various materials in harsh environments.
Synthetic Metal Containing Polymers - Original PDF
Synthetic Metal Containing Polymers - Original PDF
نویسندگان: Ian Manners خلاصه: The development of the field of synthetic metal-containing polymers - where metal atoms form an integral part of the main chain or side group structure of a polymer - aims to create new materials which combine the processability of organic polymers with the physical or chemical characteristics associated with the metallic element or complex. This book covers the major developments in the synthesis, properties, and applications of synthetic metal-containing macromolecules, and includes chapters on the preparation and characterization of metal-containing polymers, metallocene-based polymers, rigid-rod organometallic polymers, coordination polymers, polymers containing main group metals, and also covers dendritic and supramolecular systems. The book describes both polymeric materials with metals in the main chain or side group structure and covers the literature up to the end of 2002.

آیا کتاب مورد نظر هنوز بر روی سایت قرار نگرفته است؟ جای نگرانی نیست! کافی است بر روی گزینه سفارش کتاب کلیک کرده و درخواست خود را ثبت کنید. در کمتر از چند ساعت کتاب شما را آماده خواهیم کرد.