The Iron Oxides Structure, Properties, Reactions, Occurences and Uses - Original PDF

دانلود کتاب The Iron Oxides Structure, Properties, Reactions, Occurences and Uses - Original PDF

Author: R. M. Cornell, U. Schwertmann

0 (0)

توضیحات کتاب :

Preface to the Second Edition Since this book first appeared, there have been hundreds of new publications on the subject of iron oxides. These have covered a wide range of disciplines including sur- face chemistry, the geosciences, mineralogy, environmental science and various branches of technology. In view of the amount of new material that is available, we decided, that once the copies of the first edition were exhausted, we would prepare a second edition that would incorporate the new developments. As before, our aim has been to bring all aspects of the information concerning iron oxides into a single, compact volume. All the chapters have been revised and up- dated and new figures and tables added. The book is structured according to topic with the same arrangement as in the first edition being followed. In view of the re- cent recognition of the impact iron oxides have on environmental processes, a chap- ter dealing with the environmental aspects of these compounds has been added. The book concludes with a considerably expanded bibliography. We hope that this new edition will continue to be of interest to all those research- ers who, in one way or another, are involved with iron oxides. Numerous persons and institutions from around the world again supplied data, figures, colour pictures and electron micrographs and technical help. These include Dr. H. Chr. Bartscherer (Mçnchen), Mr M. Burlot (Apt), Dr. R. Båumler and Dr. Be- cher (Freising), Mr H. Breuning (Stuttgart), Dr. J. M. Bigham (Columbus, USA), Dr. G. Buxbaum (Bayer), Dr. L. Carlson (Helsinki), Dr. R. A. Eggleton (Canberra), Dr. F. G. Ferris (Toronto), Dr. R. W. Fitzpatrick (Adelaide), Dr. D. Fortin (Ottawa), Dr. M. R. Fontes (Guatemala), Professor R. Giovanoli (Bern), Dr. G. Glasauer (Guelph), Dr. M. Hanslick (Mçnchen), Dr. P. Jaesche (Freising), Dr. A. A. Jones (Reading), Dr. R. C. Jones (Honolulu), Dr. D. E. Janney (Tempe), Dr. R. Loeppert (College Station), Professor S. Mann (Bristol), Dr. E. Murad (Marktredwitz), Dr. H. Maeda (Tsukuba), Professor A. Manceau (Grenoble), Professor E. Matijevic (Potsdam, USA), Mrs U. Maul (Freising), Dr. J. P. Muller (Paris), Muse National de Prhistoire (Les Eyzies, France), Mr R. Miehler (Mçnchen), Dr. T. Nagano (Naka), Dr. H. Naono (Uegahara), NASA (Houston), Professor A. Posner { (Perth), Mrs M. Sauvet (Apt), Dr. N. Sabil (Mçnchen), Dr. P. Schad (Freising), Dr. A. Schei- degger (Zçrich), Dr. T. Schwarz (Berlin), Dr. A. Scheinost (Zçrich), Dr. D. Schçler (Bremen), D. Schwertmann (Freising), Professor H. Stanjek (Aachen), Dr. P. Self (Adelaide), Professor T. Sugimoto (Sendai), Dr. K. Tazaki (Ishikawa), Dr. T. Tessie

سرچ در وردکت | سرچ در گودریدز | سرچ در اب بوکز | سرچ در آمازون | سرچ در گوگل بوک

491 بازدید 0 خرید

ضمانت بازگشت

ضمانت بازگشت

فایل های تست شده

فایل های تست شده

پرداخت آنلاین

پرداخت آنلاین

تضمین کیفیت

تضمین کیفیت

دانلود فوری

دانلود فوری

5 Surface area and porosity 5.1 Surface Area The specific surface area of a solid is the surface area of a unit mass of material, usually expressed as m2 g ±1 . There is an inverse relationship between surface area and particle size. Massive crystals of hematite from an ore deposit (e. g. specularite) may have a surface area 51 m 2 g ±1 . As particle size/crystallinity is governed largely by the chemical environment experienced during crystal growth, the surface area of a synthetic iron oxide depends upon the method of synthesis and that of a natural one, upon the environment in which the oxide formed. The oxide surface has structural and functional groups (sites)which interact with gaseous and soluble species and also with the surfaces of other oxides and bacterial cells. The number of available sites per unit mass of oxide depends upon the nature of the oxide and its specific surface area. The specific surface area influences the re- activity of the oxide particularly its dissolution and dehydroxylation behaviour, inter- action with sorbents, phase transformations and also, thermodynamic stability. In addition, specific surface area and also porosity are crucial factors for determining the activity of iron oxide catalysts. Surface area is a property that can vary according to the method used to measure it. Areas found by gas adsorption may depend upon the size and nature of the probe molecule. A full description of the different methods in use and also their limita- tions is given in the text of Gregg and Sing (1991). The BET method (Brunauer, Emmett and Teller, 1938)with N 2 as the adsorbate, is by far the most common method of measuring the surface areas of Fe oxides. Var- ious commerical instruments are available for these measurements. The method in- volves measuring the extent of adsorption of N2 (at the boiling temperature of liquid N2 ± 77 K)on the outgassed solid as a function of the relative pressure, p/p0 , i. e. the adsorption isotherm; p is the partial pressure of the adsorbate and p0 is its equili- brium vapour pressure. The following linear relationship exists between the amount adsorbed, v, (cm3 g ±1 )and the relative vapour pressure, p/p0 ; p=p0 v …1  p=p0† ˆ 1 v …p0=p  1† ˆ 1 vmc ‡ c  1 nmc  p p0 …5:1† 95 The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses. R. M. Cornell, U. Schwertmann Copyright # 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 3-527-30274-3 where vm is the monolayer capacity of adsorption (B in Fig. 5.3)and c the so called BET constant. c and vm are obtained from the slope of the plot, s, and the intercept, i, on the ordinate i. e. vm = (s + i)±1 and c = s i + 1. The surface area is then calculated from vm and the area occupied by one molecule of the adsorbate e. g. 0.162 nm 2 /mo- lecule for N2 . The BET constant c is related to the energy of adsorption i. e. the differ- ence between the molar heat of adsorption of the first layer and the molar heat of condensation of the adsorbate. As an example, Figure 5.1 (left)shows the original N2 adsorption curves of five goethites synthesized at 4, 15, 30, 50 and 70 8C and Fig- ure 5.1 (right)shows their BET-plots according to eq. (5.1). As N2 is a relatively large molecule, it may not be able to enter small pores. Furthermore, owing to its non ideal gas behaviour, N2 cannot be used for surface areas 51 m2 g ±1 . These problems can be overcome to some extent by replacing N2 with water (area 0.108 nm2 /molecule)which can enter very small pores, or with Ar (0.138 nm2 /molecule)which, with a lower saturation vapour pressure, can be used to measure samples with very low surface areas. The BET method requires that the sample be dried and outgassed to remove ad- sorbed water. This procedure may, if the outgassing temperature is too high, lead to a phase change at the surface of the oxide hydroxide and hence, an alteration in the specific surface area of the sample. Clausen and Fabricius (2000)recommend that ferrihydrite be outgassed at room temperature, at which temperature, a stable BET surface area is obtained after 19 hr of outgassing. Other methods of surface area determination depend, in general, on adsorption under well defined conditions of various solute molecules of known dimensions (Sposito, 1984; Davis and Kent, 1990). Some of these are dipole molecules so that dipole interactions with the surface or H-bonding are involved. Water adsorbed at a fixed relative water vapour pressure (e. g. 0.2)to provide a monolayer is one ex- ample (Torrent et al., 1990). An organic dipole frequently used for soils is ethylene glycol monoethylether (EGME)(Carter et al., 1965). The main problem with these dipole molecules lies in their mutual association which may lead to localized ad- sorption beyond a monolayer (capillary condensation), particularly on porous mate- ria

چکیده فارسی

 

5 مساحت سطح و تخلخل 5.1 مساحت سطح سطح ویژه یک جامد مساحت سطح واحد جرم ماده است که معمولاً به صورت m2 g ± 1 بیان می شود. بین مساحت سطح و اندازه ذرات رابطه معکوس وجود دارد. بلورهای عظیم هماتیت از یک کانسار (مثلاً اسپکولاریت) ممکن است دارای سطحی برابر با 1±51 متر مربع باشد. از آنجایی که اندازه ذرات / بلورینگی عمدتاً توسط محیط شیمیایی تجربه شده در طول رشد بلور کنترل می شود، مساحت سطح یک اکسید آهن مصنوعی به روش سنتز و به روش طبیعی بستگی دارد، به محیطی که اکسید در آن تشکیل شده است. سطح اکسید دارای گروه‌های ساختاری و عملکردی است که با گونه‌های گازی و محلول و همچنین با سطوح سایر اکسیدها و سلول‌های باکتری در تعامل هستند. تعداد مکان های موجود در واحد جرم اکسید به ماهیت اکسید و سطح ویژه آن بستگی دارد. سطح ویژه بر فعالیت مجدد اکسید به ویژه رفتار انحلال و هیدروکسیلاسیون آن، برهمکنش با جاذب ها، تبدیل فازها و همچنین پایداری ترمودینامیکی تأثیر می گذارد. علاوه بر این، سطح ویژه و همچنین تخلخل از عوامل بسیار مهم برای تعیین فعالیت کاتالیزورهای اکسید آهن هستند. مساحت سطح خاصیتی است که می تواند با توجه به روشی که برای اندازه گیری آن استفاده می شود متفاوت باشد. نواحی یافت شده توسط جذب گاز ممکن است به اندازه و ماهیت مولکول پروب بستگی داشته باشد. شرح کامل روشهای مختلف مورد استفاده و همچنین محدودیتهای آنها در متن گرگ و سینگ (1991) آورده شده است. روش BET (بروناور، امت و تلر، 1938) با N 2 به عنوان جاذب، تا حد زیادی رایج ترین روش اندازه گیری سطح اکسیدهای آهن است. ابزارهای تجاری مختلف برای این اندازه گیری ها موجود است. این روش شامل اندازه گیری میزان جذب N2 (در دمای جوش N2 ± 77 K) روی جامد خارج شده به عنوان تابعی از فشار نسبی، p/p0، یعنی. ه. ایزوترم جذب؛ p فشار جزئی ماده جاذب و p0 فشار بخار تعادلی آن است. رابطه خطی زیر بین مقدار جذب شده، v، (cm3 g ± 1) و فشار بخار نسبی p/p0 وجود دارد. p=p0 v 1 p=p0 1 v p0=p 1 1 vmc c 1 nmc p p0 5:1 95 اکسیدهای آهن: ساختار، خواص، واکنش ها، موارد و موارد استفاده. R. M. Cornell, U. Schwertmann Copyright # 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 3-527-30274-3 که در آن vm ظرفیت تک لایه جذب است (B در شکل 5.3) و c به اصطلاح BET ثابت. c و vm از شیب نمودار، s، و قطع، i، روی مختص i به دست می آیند. ه. vm = (s + i)±1 و c = s i + 1. سپس مساحت سطح از vm محاسبه می شود و مساحت اشغال شده توسط یک مولکول از ماده جاذب e. g. 0.162 نانومتر 2 / مولکول برای N2. ثابت BET c با انرژی جذب i مرتبط است. ه. تفاوت بین گرمای مولی جذب لایه اول و گرمای مولی تراکم ماده جاذب. به عنوان مثال، شکل 5.1 (سمت چپ) منحنی های اصلی جذب N2 پنج گوتیت سنتز شده در 4، 15، 30، 50 و 70 8C را نشان می دهد و شکل 5.1 (راست) نمودارهای BET آنها را مطابق معادله نشان می دهد. (5.1). از آنجایی که N2 یک مولکول نسبتا بزرگ است، ممکن است نتواند وارد منافذ کوچک شود. علاوه بر این، به دلیل رفتار گازی غیر ایده آل، N2 نمی تواند برای سطوح 51 m2 g ± 1 استفاده شود. این مشکلات تا حدی با جایگزینی N2 با آب (مساحت 0.108 نانومتر مربع / مولکول) که می تواند وارد منافذ بسیار کوچک شود، یا با Ar (0.138 نانومتر مربع / مولکول) که با فشار بخار اشباع پایین تر، می تواند برای اندازه گیری استفاده شود برطرف می شود. نمونه هایی با سطح بسیار کم روش BET مستلزم آن است که نمونه خشک شود و از گاز خارج شود تا آب جذب شده حذف شود. این روش ممکن است، اگر دمای خروجی بیش از حد بالا باشد، منجر به تغییر فاز در سطح اکسید هیدروکسید و در نتیجه، تغییر در سطح ویژه نمونه شود. Clausen و Fabricius (2000) توصیه می کنند که فری هیدریت در دمای اتاق خارج شود، که در آن دما، سطح BET پایدار پس از 19 ساعت خروج گاز حاصل می شود. روش‌های دیگر تعیین سطح به طور کلی به جذب سطحی در شرایط کاملاً مشخص مولکول‌های املاح مختلف با ابعاد شناخته شده بستگی دارد (اسپوزیتو، 1984؛ دیویس و کنت، 1990). برخی از اینها مولکولهای دوقطبی هستند به طوری که برهمکنش دوقطبی با سطح یا پیوند H درگیر می شود. آب جذب شده در یک فشار نسبی بخار آب ثابت (مثلاً 0.2) برای ایجاد یک تک لایه یک مثال است (Torrent et al., 1990). یک دوقطبی آلی که اغلب برای خاک استفاده می شود، اتیلن گلیکول مونو اتیل اتر (EGME) است (کارتر و همکاران، 1965). مشکل اصلی این مولکول های دوقطبی در ارتباط متقابل آنها نهفته است که ممکن است منجر به جذب موضعی فراتر از یک لایه (تراکم مویرگی)، به ویژه در مواد متخلخل شود

 

ادامه ...

Authors
Dr. R. M. Cornell
Universitåt Bern
Department fçr Chemie und Biochemie
Freiestrasse 3
3000 Bern 9
Switzerland
Prof. em. Dr. Dr. h.c. U. Schwertmann
Technische Universitåt Mçnchen
Institut fçr Bodenkunde
85354 Freising
Germany
1st Edition 1996
1st Reprint 1997
2nd Reprint 1998
2nd Edition 2003
Cover Illustration
Prehistoric cave painting of a red horse from
Lascaux. The colours used in the painting
were obtained from the local deposits of red
and yellow ochres, i. e. iron oxides. Similar
ochre deposits in Southern France are still
mined for pigment production today. As
colouring agents, iron oxides have served
man more or less continuously for over
30,000 years. A major, modern technological
application of these compounds (mainly in
synthetic form) is as pigment.
(Courtesy of Muse National de Prhistorie
Les Eyzies).
This book was carefully produced. Never-
theless, authors and publisher do not war-
rant the information contained therein to be
free of errors. Readers are advised to keep in
mind that statements, data, illustrations,
procedural details or other items may
inadvertently be inaccurate.
Library of Congress Card No.: Applied for:
British Library Cataloguing-in-Publication
Data: A catalogue record for this book is
available from the British Library.
Bibliographicinformation published by
Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication
in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the
Internet at <http://dnb.ddb.de>.
 2003 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim
All rights reserved (including those of trans-
lation in other languages). No part of this
book may be reproduced in any form ± by
photoprinting, microfilm, or any other
means ± nor transmitted or translated into
machine language without written permis-
sion from the publishers. Registered names,
trademarks, etc. used in this book, even
when not specifically marked as such, are
not to be considered unprotected by law.
Printed on acid-free paper
Composition ProSatz Unger, Weinheim
Printing Druckhaus Darmstadt, Darmstadt
Bookbinding Litges & Dopf, Heppenheim
Printed in the Federal Republic of Germany
ISBN 3-527-30274-3
&

Contents
1 Introduction to the iron oxides 1
2 Crystal structure 9
2.1 General 9
2.2 Iron oxide structures 9
2.2.1 Close packing of anion layers 10
2.2.2 Linkages of octahedra or tetrahedra 13
2.3 Structures of the individual iron oxides 14
2.3.1 The oxide hydroxides 14
2.3.1.1 Goethite a-FeOOH 14
2.3.1.2 Lepidocrocite c-FeOOH 18
2.3.1.3 Akaganite b-FeOOH and schwertmannite
Fe16 O16 (OH) y(SO 4 )z 7 n H2 O 20
2.3.1.4 d-FeOOH and d'-FeOOH (feroxyhyte) 22
2.3.1.5 High pressure FeOOH 23
2.3.1.6 Ferrihydrite 23
2.3.2 The Hydroxides 27
2.3.2.1 Bernalite Fe(OH)3 7 n H 2 O 27
2.3.2.2 Fe(OH)2 27
2.3.2.3 Green rusts 28
2.3.3 The Oxides 29
2.3.3.1 Hematite a-Fe2 O3 29
2.3.3.2 e-Fe2 O3 31
2.3.3.3 Magnetite Fe3 O4 32
2.3.3.4 Maghemite c-Fe2O 3 32
2.3.3.5 Wçstite Fe1±xO 34
2.4 The Fe-Ti oxide system 37
Appendix 37
3 Cation substitution 39
3.1 General 39
3.2 Goethite and lepidocrocite 42
3.2.1 Al substitution 42
V
The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses. R. M. Cornell, U. Schwertmann
Copyright # 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-30274-3

ادامه ...

3.2.2 Other substituting cations 47 3.3 Hematite 51 3.3.1 Al substitution 51 3.3.2 Other cations 54 3.4 Magnetite and maghemite 55 3.5 Other iron oxides 57 4 Crystal morphology and size 59 4.1 General 59 4.1.1 Crystal growth 59 4.1.2 Crystal morphology 60 4.1.3 Crystal size 62 4.2 The iron oxides 63 4.2.1 Goethite 64 4.2.1.1 General 64 4.2.1.2 Domainic character 69 4.2.1.3 Twinning 71 4.2.1.4 Effect of additives 73 4.2.2 Lepidocrocite 74 4.2.3 Akaganite and schwertmannite 75 4.2.4 Ferrihydrite 78 4.2.5 Hematite 81 4.2.6 Magnetite 87 4.2.7 Maghemite 92 4.2.8 Other Iron Oxides 94 5 Surface area and porosity 95 5.1 Surface area 95 5.2 Porosity 98 5.3 Surface roughness and fractal dimensions 100 5.4 The iron oxides 101 5.4.1 Goethite 102 5.4.2 Lepidocrocite 103 5.4.3 Akaganite and schwertmannite 104 5.4.4 d-FeOOH and feroxyhyte 105 5.4.5 Ferrihydrite 106 5.4.6 Hematite 108 5.4.7 Magnetite 109 5.4.8 Maghemite 109 6 Electronic, electrical and magnetic properties and colour 111 6.1 Electronic properties 111 6.1.1 Free Fe3+ and Fe2+ ions 111 6.1.2 Bound Fe ions 112 6.1.3 Molecular orbital description of bonding in iron oxides 113 VI Contents 6.2 Electrical properties 115 6.2.1 Semiconductor properties of iron oxides 116 6.3 Magnetic properties 118 6.3.1 Basic definitions 118 6.3.2 Types of magnetism 119 6.3.3 Magnetic behaviour of iron oxides 121 6.3.4 The different iron oxides 123 6.3.4.1 Goethite 123 6.3.4.2 Lepidocrocite 124 6.3.4.3 Akaganite 124 6.3.4.4 d-FeOOH, feroxyhyte and high pressure FeOOH 125 6.3.4.5 Ferrihydrite 125 6.3.4.6 Hematite 126 6.3.4.7 Magnetite and maghemite 128 6.3.4.8 Other Fe oxides 130 6.4 Colour 130 6.4.1 General 130 6.4.2 Colours 133 6.4.3 Pigment properties 136 7 Characterization 139 7.1 Introduction 139 7.2 Infrared spectroscopy 141 7.2.1 Goethite 141 7.2.2 Lepidocrocite 144 7.2.3 Ferrihydrite 144 7.2.4 Hematite 145 7.2.5 Other iron oxides 146 7.3 Raman spectroscopy 146 7.4 Ultraviolet-visible spectroscopy 147 7.4.1 General 147 7.4.2 Spectra of the different Fe oxides 148 7.5 Mæssbauer spectroscopy 152 7.5.1 General 152 7.5.2 Spectra of the various Fe oxides 157 7.5.2.1 Goethite and lepidocrocite 157 7.5.2.2 Ferrihydrite 157 7.5.2.3 Hematite 158 7.5.2.4 Magnetite and maghemite 158 7.5.2.5 Other iron oxides 160 7.6 Magnetic properties (Magnetometry) 161 7.6.1 General 161 7.6.2 Magnetic susceptibility v 162 7.6.3 Magnetic anisotropy, coercivity and saturation magnetization 163 7.6.4 Domain type 164 VIIContents 7.6.5 Curie temperature analysis 167 7.6.6 Applications 167 7.7 Other spectroscopic techniques 168 7.7.1 Photoelectron spectroscopy 169 7.7.2 X-ray absorption spectroscopy 171 7.8 Diffractometry 172 7.8.1 X-ray diffraction 172 7.8.2 Other diffraction techniques 177 7.9 Microscopy 179 7.10 Thermoanalysis 181 7.11 Dissolution methods 183 8 Thermodynamics of the Fe-O2 -H 2O system 185 8.1 General 185 8.2 Standard free energy of reaction and the equilibrium constant 186 8.3 Redox reactions 189 8.4 Effect of complexing agents on redox potential 192 8.5 Stabilities of iron oxides 193 8.5.1 ªBulkº crystals 193 8.5.2 Effect of particle size and Al substitution 197 9 Solubility 201 9.1 General 201 9.2 The solubility product 201 9.3 The effect of hydrolysis reactions and pH on solubility 203 9.4 Other factors influencing solubility and the solubility product 208 9.4.1 Complexation 208 9.4.2 Redox reactions 209 9.4.3 Ionic strength 211 9.4.4 Properties of the solid 211 9.4.4.1 Particle size 211 9.4.4.2 Ageing and isomorphous substitution 214 9.5 Methods of determining or calculating the solubility product 214 9.6 Solubility products of the various oxides 217 10 Surface Chemistry and Colloidal Stability 221 10.1 Surface functional groups 221 10.2 Surface acidity and acidity constants 227 10.3 The electrical double layer and electrochemical properties 232 10.4 Point of zero charge 236 10.5 Stability of colloidal suspensions 241 10.5.1 General 241 10.5.2 Stability of iron oxide suspensions 243 10.6 Tactoids, gels and schiller layers 250 10.7 Rheological properties 250 VIII Contents 11 Adsorption of Ions and Molecules 253 11.1 General 253 11.2 Treatment of adsorption data 254 11.2.1 The Langmuir, Freundlich and Temkin isotherm equations 254 11.2.2 Surface complexation models 255 11.3 Anion adsorption 258 11.3.1 Modes of coordination 265 11.3.2 Examples of inorganic ligands 267 11.3.2.1 Phosphate 267 11.3.2.2 Other anions 270 11.3.2.3 Organic anions and other organic compounds 273 11.4 Cation adsorption 279 11.4.1 General 279 11.4.2 Examples of cations 284 11.5 Adsorption from mixed systems 288 11.5.1 Competition between anions 289 11.5.2 Competition between cations 289 11.5.3 Interactions between cations and anions 290 11.5.4 Ternary adsorption 290 11.6 Adsorption of water 293 11.7 Adsorption of gases 293 11.8 Photochemical reactions 295 12 Dissolution 297 12.1 Introduction 297 12.2 Dissolution reactions and mechanisms 298 12.2.1 General 298 12.2.2 Protonation 299 12.2.3 Complexation 301 12.2.4 Reduction 306 12.2.4.1 General 306 12.2.4.2 Examples of reductants 312 12.2.4.3 Photochemical reduction 316 12.2.4.4 Biological and other reduction reactions 319 12.2.5 Comparison of the three different types of dissolution reactions 323 12.3 Dissolution equations 324 12.4 Individual iron oxides 326 12.4.1 Goethite 328 12.4.1.1 Unsubstituted goethite 328 12.4.1.2 Substituted goethite 330 12.4.1.3 Natural goethite and hematite 332 12.4.2 Lepidocrocite and akaganite 334 12.4.3 Ferrihydrite 335 12.4.4 Hematite 337 IXContents 12.4.5 Magnetite and maghemite 338 12.4.6 Comparison of different oxides 339 13 Formation 345 13.1 General 345 13.2 Formation in FeIII systems 347 13.2.1 Hydrolysis reactions 347 13.2.2 Formation of the different FeIII oxides 350 13.3 Formation in aqueous FeII systems 355 13.3.1 General 355 13.3.2 Effect of pH 356 13.3.3 Effect of oxidation rate 359 13.3.4 Effect of foreign compounds 360 13.4 Decomposition of Fe complexes 363 14 Transformations 365 14.1 Introduction 365 14.2 Thermal transformations 367 14.2.1 General 367 14.2.2 Goethite to hematite 369 14.2.3 Lepidocrocite to maghemite or hematite 373 14.2.4 Akaganite and schwertmannite to hematite 375 14.2.5 d-FeOOH and feroxyhyte to hematite 378 14.2.6 Ferrihydrite to hematite 378 14.2.7 Interconversions between maghemite and hematite 382 14.3 Via solution transformations 383 14.3.1 Lepidocrocite to goethite/hematite 383 14.3.2 Akaganite to goethite/hematite 384 14.3.3 Schwertmannite to goethite 385 14.3.4 Maghemite and goethite to hematite 386 14.3.5 Ferrihydrite to other Fe oxides 388 14.3.5.1 Rate of transformation 388 14.3.5.2 Hematite versus goethite formation 390 14.3.5.3 Mechanism of transformation 391 14.3.5.4 Effect of foreign compounds 393 14.3.5.4.1 General 393 14.3.5.4.2 Anions and neutral molecules 395 14.3.5.4.3 Cations 398 14.4 Oxidative and reductive transformations 402 14.4.1 Oxidation of magnetite to maghemite or hematite 402 14.4.2 Reduction of FeIII oxides to magnetite 405 14.4.3 Reduction of iron ores to iron 406 14.5 Interaction of iron oxides with other metal oxides and carbonates 407 X Contents 15 Rocks and ores 409 15.1 Introduction 409 15.2 Magmatic and metamorphic rocks and ores 409 15.3 Sediments and sedimentary rocks 412 15.3.1 Red beds 413 15.3.2 Sedimentary iron ores 416 15.3.3 Other sediments 420 15.3.4 Ferricretes and bauxites 421 15.4 Recent geological environments 422 15.4.1 Terrestrial surfaces 423 15.4.2 Spring and ground water 423 15.4.3 Deep sea 424 15.4.4 Continental shelves 424 15.4.5 Lakes and streams 425 15.4.6 Hydrothermal marine environments 427 15.4.7 Martian surface 429 15.5 Iron fractionation in sediments 430 Appendix 431 16 Soils 433 16.1 Soils ± a unique environment for iron oxide formation in terrestrial ecosystems 433 16.2 Iron oxide formation in soils 435 16.3 Iron oxide content and soil development 437 16.4 Occurrence and formation 439 16.4.1 Historical aspects 439 16.4.2 Distribution pattern 440 16.4.3 The various oxides 441 16.4.3.1 Goethite 441 16.4.3.2 Hematite and its association with goethite 442 16.4.3.3 Lepidocrocite, feroxyhyte and green rust 447 16.4.3.4 Ferrihydrite and its association with goethite 448 16.4.3.5 Magnetite and maghemite 450 16.5 Properties 452 16.5.1 Surface area, crystal morphology and size 452 16.5.2 Aluminium substitution 456 16.6 Significance for soil properties 459 16.6.1 Colour 459 16.6.2 Charge and redox properties 461 16.6.3 Anion and cation binding 463 16.6.4 Aggregation and cementation 468 17 Organisms 475 17.1 General 475 17.2 Biotically-mediated formation 476 XIContents 17.2.1 Goethite and lepidocrocite 476 17.2.2 Ferihydrite 477 17.2.3 Magnetite 480 17.2.3.1 Magnetite in chitons' teeth 481 17.2.3.2 Magnetite in bacteria and other organisms 481 17.3 Biotically induced formation 486 18 Products of iron metal corrosion 491 18.1 General 491 18.2 Electrochemical corrosion 491 18.3 High temperature oxidation/corrosion in gases 494 18.4 Other forms of corrosion 496 18.5 The products of corrosion 497 18.5.1 Iron oxides formed by electrochemical corrosion 499 18.5.2 Iron oxides in passive films 503 18.5.3 Thermally grown oxide films 504 18.6 Prevention of corrosion; protective oxide layers 506 19 Applications 509 19.1 Historical background 509 19.2 Pigments 511 19.2.1 Natural pigments 512 19.2.2 Synthetic pigments 514 19.3 Magnetic pigments 516 19.4 Ferrites 517 19.5 Catalysts 518 19.6 Other uses of iron oxides 522 19.7 Undesirable iron oxides 524 20 Synthesis 527 20.1 Industrial synthesis 527 20.1.1 General 527 20.1.2 Solid state transformations 528 20.1.2.1 The copperas process 528 20.1.2.2 Other solid state processes 528 20.1.3 Reduction of organic compounds 529 20.1.4 Precipitation from FeII solutions 530 20.1.5 Other processes 531 20.1.6 Magnetic pigments 532 20.2 Laboratory synthesis methods 533 20.2.1 Goethite 533 Other methods 533 20.2.2 Lepidocrocite 534 Other methods 534 20.2.3 Akaganite 534 XII Contents Other methods 534 20.2.4 Schwertmannite 535 20.2.5 Feroxyhyte 535 20.2.6 Ferrihydrite 535 2-line ferrihydrite 535 6-line ferrihydrite 535 Other methods 536 20.2.7 Hematite 536 Other methods 536 20.2.7.1 Coated hematite 537 20.2.8 e-Fe2 O3 538 20.2.9 Magnetite 538 Other methods 538 20.2.10 Maghemite 539 Other methods 539 20.2.11 Fe(OH)2 540 Other methods 540 20.2.12 Green rust 540 20.2.13 Other compounds 541 FeO (nonstoichiometric) 541 High pressure FeOOH 541 20.2.14 Production of iron oxides on substrates or in confined spaces 541 Goethite, hematite and ferrihydrite 541 Magnetite 541 Precipitation of goethite, ferrihydrite or magnetite in vesicles 542 21 Environmental significance 543 21.1 Introduction 543 21.2 Retention of pollutants by Fe oxides in water purification and in natural systems 544 21.2.1 Water treatment systems 544 21.2.2 Natural systems 546 21.3 Acid mine tailings 547 21.4 Detoxification reactions 549 21.5 Bacterial turnover of environmental pollutants 551 21.6 Anthropogenic dust and industrial sites 551 21.7 Iron-oxide rich waste products 552 References 555 Subject Index 651 Sources of Figures and Tables 659

ادامه ...
برای ارسال نظر لطفا وارد شوید یا ثبت نام کنید
ادامه ...
پشتیبانی محصول

۱- در صورت داشتن هرگونه مشکلی در پرداخت، لطفا با پشتیبانی تلگرام در ارتباط باشید.

۲- برای خرید محصولات لطفا به شماره محصول و عنوان دقت کنید.

۳- شما می توانید فایلها را روی نرم افزارهای مختلف اجرا کنید(هیچگونه کد یا قفلی روی فایلها وجود ندارد).

۴- بعد از خرید، محصول مورد نظر از صفحه محصول قابل دانلود خواهد بود همچنین به ایمیل شما ارسال می شود.

۵- در صورت وجود هر مشکلی در فرایند خرید با تماس بگیرید.