Quantitative trading - algorithms, analytics, data, models, optimization - Original PDF

دانلود کتاب Quantitative trading - algorithms, analytics, data, models, optimization - Original PDF

Author: Wong, Samuel Po Shing

0 (0)

توضیحات کتاب :

This chapter gives an overview and some historical background of quantita- tive trading, the title of this book. It begins with a historical review of the evolution of the trading infrastructure, from verbal communication and hand signaling in an exchange to electronic platforms, in Section 1.1. It then gives in Section 1.2 an introduction to quantitative trading strategies and in par- ticular, the time-scales associated with different classes of strategies. In this connection, we give in Section 1.3 a brief historical account of the paradigm shift from the “efficient market hypothesis” (EMH) to arbitrage opportuni- ties via quantitative trading. In Section 1.4, we describe “quant funds” that use these quantitative trading strategies, and also the closely related mutual funds and hedge funds. An overview of the algorithms, analytics, data, models, and optimization methods — the subtitle of this book — used in quantita- tive trading is given in Section 1.5. Section 1.6 discusses the interdisciplinary background of the book and the anticipated diversity of its target audience. It also provides suggestions on how the book can be used by different groups of readers. Supplements and problems are given in Section 1.7.

سرچ در وردکت | سرچ در گودریدز | سرچ در اب بوکز | سرچ در آمازون | سرچ در گوگل بوک

731 بازدید 0 خرید

ضمانت بازگشت

ضمانت بازگشت

فایل های تست شده

فایل های تست شده

پرداخت آنلاین

پرداخت آنلاین

تضمین کیفیت

تضمین کیفیت

دانلود فوری

دانلود فوری

From the perspective of economics, a stock exchange is basically a double auction system. Bids and offers are made in a stock exchange giving all par- ticipants a chance to compete for the order with the best price, analogous to an auction that results in “efficient price discovery”. Before the advent of electronic trading platforms, trading floors (or “trading pits”) were the venues where buyers and sellers of stocks and bonds (or futures and options) gath- ered at an exchange to trade. Open outcry was a method of communication, involving shouting and use of hand signals to transfer information about buy and sell orders. The hand signals used to communicate information in an open outcry environment consist of palm facing out and hands away from the body to gesture wishes to sell, and palms facing in and hands holding up to gesture wishes to buy; see Figure 1.1

چکیده فارسی

 

از دیدگاه اقتصاد، بورس اوراق بهادار اساساً یک سیستم حراج دوگانه است. پیشنهادها و پیشنهادات در یک بورس اوراق بهادار انجام می شود و به همه شرکت کنندگان این فرصت را می دهد تا برای سفارش با بهترین قیمت رقابت کنند، مشابه حراجی که منجر به "کشف قیمت کارآمد" می شود. قبل از ظهور پلتفرم‌های معاملاتی الکترونیکی، طبقه‌های معاملاتی (یا «پیت‌های معاملاتی») مکان‌هایی بودند که خریداران و فروشندگان سهام و اوراق قرضه (یا قراردادهای آتی و اختیار معامله) در یک بورس گرد هم می‌آمدند تا معامله کنند. فریاد باز یک روش ارتباطی بود که شامل فریاد زدن و استفاده از سیگنال های دستی برای انتقال اطلاعات در مورد سفارشات خرید و فروش بود. سیگنال‌های دستی که برای برقراری ارتباط اطلاعات در یک محیط فریاد باز استفاده می‌شوند شامل کف دست‌ها به سمت بیرون و دور از بدن برای نشان دادن تمایل به فروش، و کف دست‌ها رو به داخل و دست‌هایی که به سمت بالا نگه داشته شده‌اند تا با اشاره تمایل به خرید داشته باشند. شکل 1.1

را ببینید

 

ادامه ...

Author(s): Wong, Samuel Po Shing

Publisher: Taylor & Francis Inc, Year: 2016

ISBN: 9781498706483,1498706487

ادامه ...

Contents Preface xiii List of Figures xvii List of Tables xxi 1 Introduction 1 1.1 Evolution of trading infrastructure . . . . . . . . . . . . . . . 1 1.2 Quantitative strategies and time-scales . . . . . . . . . . . . 5 1.3 Statistical arbitrage and debates about EMH . . . . . . . . . 6 1.4 Quantitative funds, mutual funds, hedge funds . . . . . . . . 8 1.5 Data, analytics, models, optimization, algorithms . . . . . . 10 1.6 Interdisciplinary nature of the subject and how the book can be used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.7 Supplements and problems . . . . . . . . . . . . . . . . . . . 13 2 Statistical Models and Methods for Quantitative Trading 17 2.1 Stylized facts on stock price data . . . . . . . . . . . . . . . . 18 2.1.1 Time series of low-frequency returns . . . . . . . . . . 18 2.1.2 Discrete price changes in high-frequency data . . . . . 18 2.2 Brownian motion models for speculative prices . . . . . . . . 22 2.3 MPT as a “walking shoe” down Wall Street . . . . . . . . . 22 2.4 Statistical underpinnings of MPT . . . . . . . . . . . . . . . 24 2.4.1 Multifactor pricing models . . . . . . . . . . . . . . . . 24 2.4.2 Bayes, shrinkage, and Black-Litterman estimators . . 25 2.4.3 Bootstrapping and the resampled frontier . . . . . . . 26 2.5 A new approach incorporating parameter uncertainty . . . . 27 2.5.1 Solution of the optimization problem . . . . . . . . . . 27 2.5.2 Computation of the optimal weight vector . . . . . . . 28 2.5.3 Bootstrap estimate of performance and NPEB . . . . 29 2.6 From random walks to martingales that match stylized facts 30 2.6.1 From Gaussian to Paretian random walks . . . . . . . 31 2.6.2 Random walks with optional sampling times . . . . . 32 2.6.3 From random walks to ARIMA, GARCH . . . . . . . 35 2.7 Neo-MPT involving martingale regression models . . . . . . 37 vii viii Contents 2.7.1 Incorporating time series effects in NPEB . . . . . . . 38 2.7.2 Optimizing information ratios along efficient frontier . 38 2.7.3 An empirical study of neo-MPT . . . . . . . . . . . . 39 2.8 Statistical arbitrage and strategies beyond EMH . . . . . . . 41 2.8.1 Technical rules and the statistical background . . . . . 41 2.8.2 Time series, momentum, and pairs trading strategies . 43 2.8.3 Contrarian strategies, behavioral finance, and investors’ cognitive biases . . . . . . . . . . . . . . . . . . . . . . 44 2.8.4 From value investing to global macro strategies . . . . 44 2.8.5 In-sample and out-of-sample evaluation . . . . . . . . 45 2.9 Supplements and problems . . . . . . . . . . . . . . . . . . . 46 3 Active Portfolio Management and Investment Strategies 61 3.1 Active alpha and beta in portfolio management . . . . . . . 62 3.1.1 Sources of alpha . . . . . . . . . . . . . . . . . . . . . 63 3.1.2 Exotic beta beyond active alpha . . . . . . . . . . . . 63 3.1.3 A new approach to active portfolio optimization . . . 64 3.2 Transaction costs, and long-short constraints . . . . . . . . . 67 3.2.1 Cost of transactions and its components . . . . . . . . 67 3.2.2 Long-short and other portfolio constraints . . . . . . . 68 3.3 Multiperiod portfolio management . . . . . . . . . . . . . . . 69 3.3.1 The Samuelson-Merton theory . . . . . . . . . . . . . 69 3.3.2 Incorporating transaction costs into Merton’s problem 72 3.3.3 Multiperiod capital growth and volatility pumping . . 73 3.3.4 Multiperiod mean-variance portfolio rebalancing . . . 74 3.3.5 Dynamic mean-variance portfolio optimization . . . . 75 3.3.6 Dynamic portfolio selection . . . . . . . . . . . . . . . 76 3.4 Supplementary notes and comments . . . . . . . . . . . . . . 78 3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4 Econometrics of Transactions in Electronic Platforms 103 4.1 Transactions and transactions data . . . . . . . . . . . . . . 104 4.2 Models for high-frequency data . . . . . . . . . . . . . . . . . 104 4.2.1 Roll’s model of bid-ask bounce . . . . . . . . . . . . . 105 4.2.2 Market microstructure model with additive noise . . . 106 4.3 Estimation of integrated variance of Xt . . . . . . . . . . . . 107 4.3.1 Sparse sampling methods . . . . . . . . . . . . . . . . 108 4.3.2 Averaging method over subsamples . . . . . . . . . . . 109 4.3.3 Method of two time-scales . . . . . . . . . . . . . . . . 109 4.3.4 Method of kernel smoothing: Realized kernels . . . . . 110 4.3.5 Method of pre-averaging . . . . . . . . . . . . . . . . . 111 4.3.6 From MLE of volatility parameter to QMLE of [X]T . 112 4.4 Estimation of covariation of multiple assets . . . . . . . . . . 113 Contents ix 4.4.1 Asynchronicity and the Epps effect . . . . . . . . . . . 113 4.4.2 Synchronization procedures . . . . . . . . . . . . . . . 114 4.4.3 QMLE for covariance and correlation estimation . . . 115 4.4.4 Multivariate realized kernels and two-scale estimators 116 4.5 Fourier methods . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.5.1 Fourier estimator of [X]T and spot volatility . . . . . 118 4.5.2 Statistical properties of Fourier estimators . . . . . . . 120 4.5.3 Fourier estimators of spot co-volatilities . . . . . . . . 121 4.6 Other econometric models involving TAQ . . . . . . . . . . . 122 4.6.1 ACD models of inter-transaction durations . . . . . . 123 4.6.2 Self-exciting point process models . . . . . . . . . . . 124 4.6.3 Decomposition of Di and generalized linear models . . 125 4.6.4 McCulloch and Tsay’s decomposition . . . . . . . . . 126 4.6.5 Joint modeling of point process and its marks . . . . . 127 4.6.6 Realized GARCH and other predictive models . . . . 128 4.6.7 Jumps in efficient price process and power variation . 130 4.7 Supplementary notes and comments . . . . . . . . . . . . . . 132 4.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5 Limit Order Book: Data Analytics and Dynamic Models 143 5.1 From market data to limit order book (LOB) . . . . . . . . . 144 5.2 Stylized facts of LOB data . . . . . . . . . . . . . . . . . . . 145 5.2.1 Book price adjustment . . . . . . . . . . . . . . . . . . 145 5.2.2 Volume imbalance and other indicators . . . . . . . . 148 5.3 Fitting a multivariate point process to LOB data . . . . . . . 151 5.3.1 Marketable orders as a multivariate point process . . . 151 5.3.2 Empirical illustration . . . . . . . . . . . . . . . . . . 153 5.4 LOB data analytics via machine learning . . . . . . . . . . . 157 5.5 Queueing models of LOB dynamics . . . . . . . . . . . . . . 159 5.5.1 Diffusion limits of the level-1 reduced-form model . . . 160 5.5.2 Fluid limit of order positions . . . . . . . . . . . . . . 163 5.5.3 LOB-based queue-reactive model . . . . . . . . . . . . 166 5.6 Supplements and problems . . . . . . . . . . . . . . . . . . . 169 6 Optimal Execution and Placement 183 6.1 Optimal execution with a single asset . . . . . . . . . . . . . 184 6.1.1 Dynamic programming solution of problem (6.2) . . . 185 6.1.2 Continuous-time models and calculus of variations . . 187 6.1.3 Myth: Optimality of deterministic strategies . . . . . . 189 6.2 Multiplicative price impact model . . . . . . . . . . . . . . . 190 6.2.1 The model and stochastic control problem . . . . . . . 190 6.2.2 HJB equation for the finite-horizon case . . . . . . . . 191 6.2.3 Infinite-horizon case T = ∞ . . . . . . . . . . . . . . . 193 x Contents 6.2.4 Price manipulation and transient price impact . . . . 196 6.3 Optimal execution using the LOB shape . . . . . . . . . . . 196 6.3.1 Cost minimization . . . . . . . . . . . . . . . . . . . . 199 6.3.2 Optimal strategy for Model 1 . . . . . . . . . . . . . . 202 6.3.3 Optimal strategy for Model 2 . . . . . . . . . . . . . . 203 6.3.4 Closed-form solution for block-shaped LOBs . . . . . . 204 6.4 Optimal execution for portfolios . . . . . . . . . . . . . . . . 204 6.5 Optimal placement . . . . . . . . . . . . . . . . . . . . . . . 207 6.5.1 Markov random walk model with mean reversion . . . 208 6.5.2 Continuous-time Markov chain model . . . . . . . . . 211 6.6 Supplements and problems . . . . . . . . . . . . . . . . . . . 215 7 Market Making and Smart Order Routing 221 7.1 Ho and Stoll’s model and the Avellanedo-Stoikov policy . . . 222 7.2 Solution to the HJB equation and subsequent extensions . . 223 7.3 Impulse control involving limit and market orders . . . . . . 225 7.3.1 Impulse control for the market maker . . . . . . . . . 225 7.3.2 Control formulation . . . . . . . . . . . . . . . . . . . 226 7.4 Smart order routing and dark pools . . . . . . . . . . . . . . 228 7.5 Optimal order splitting among exchanges in SOR . . . . . . 230 7.5.1 The cost function and optimization problem . . . . . . 231 7.5.2 Optimal order placement across K exchanges . . . . . 232 7.5.3 A stochastic approximation method . . . . . . . . . . 233 7.6 Censored exploration-exploitation for dark pools . . . . . . . 234 7.6.1 The SOR problem and a greedy algorithm . . . . . . . 234 7.6.2 Modified Kaplan-Meier estimate ˆTi . . . . . . . . . . . 235 7.6.3 Exploration, exploitation, and optimal allocation . . . 236 7.7 Stochastic Lagrangian optimization in dark pools . . . . . . 237 7.7.1 Lagrangian approach via stochastic approximation . . 238 7.7.2 Convergence of Lagrangian recursion to optimizer . . 240 7.8 Supplementary notes and comments . . . . . . . . . . . . . . 241 7.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 8 Informatics, Regulation and Risk Management 251 8.1 Some quantitative strategies . . . . . . . . . . . . . . . . . . 253 8.2 Exchange infrastructure . . . . . . . . . . . . . . . . . . . . . 255 8.2.1 Order gateway . . . . . . . . . . . . . . . . . . . . . . 258 8.2.2 Matching engine . . . . . . . . . . . . . . . . . . . . . 258 8.2.3 Market data dissemination . . . . . . . . . . . . . . . 259 8.2.4 Order fee structure . . . . . . . . . . . . . . . . . . . . 260 8.2.5 Colocation service . . . . . . . . . . . . . . . . . . . . 262 8.2.6 Clearing and settlement . . . . . . . . . . . . . . . . . 263 8.3 Strategy informatics and infrastructure . . . . . . . . . . . . 264 Contents xi 8.3.1 Market data handling . . . . . . . . . . . . . . . . . . 264 8.3.2 Alpha engine . . . . . . . . . . . . . . . . . . . . . . . 265 8.3.3 Order management . . . . . . . . . . . . . . . . . . . . 266 8.3.4 Order type and order qualifier . . . . . . . . . . . . . 266 8.4 Exchange rules and regulations . . . . . . . . . . . . . . . . . 269 8.4.1 SIP and Reg NMS . . . . . . . . . . . . . . . . . . . . 269 8.4.2 Regulation SHO . . . . . . . . . . . . . . . . . . . . . 272 8.4.3 Other exchange-specific rules . . . . . . . . . . . . . . 273 8.4.4 Circuit breaker . . . . . . . . . . . . . . . . . . . . . . 274 8.4.5 Market manipulation . . . . . . . . . . . . . . . . . . . 274 8.5 Risk management . . . . . . . . . . . . . . . . . . . . . . . . 274 8.5.1 Operational risk . . . . . . . . . . . . . . . . . . . . . 275 8.5.2 Strategy risk . . . . . . . . . . . . . . . . . . . . . . . 277 8.6 Supplementary notes and comments . . . . . . . . . . . . . . 279 8.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 A Martingale Theory 295 A.1 Discrete-time martingales . . . . . . . . . . . . . . . . . . . . 295 A.2 Continuous-time martingales . . . . . . . . . . . . . . . . . . 298 B Markov Chain and Related Topics 303 B.1 Generator Q of CTMC . . . . . . . . . . . . . . . . . . . . . 303 B.2 Potential theory for Markov chains . . . . . . . . . . . . . . . 304 B.3 Markov decision theory . . . . . . . . . . . . . . . . . . . . . 304 C Doubly Stochastic Self-Exciting Point Processes 307 C.1 Martingale theory and compensators of multivariate counting processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 C.2 Doubly stochastic point process models . . . . . . . . . . . . 308 C.3 Likelihood inference in point process models . . . . . . . . . 309 C.4 Simulation of doubly stochastic SEPP . . . . . . . . . . . . . 312 D Weak Convergence and Limit Theorems 315 D.1 Donsker’s theorem and its extensions . . . . . . . . . . . . . 316 D.2 Queuing system and limit theorems . . . . . . . . . . . . . . 317 Bibliography 319 Index 349

ادامه ...
برای ارسال نظر لطفا وارد شوید یا ثبت نام کنید
ادامه ...
پشتیبانی محصول

۱- در صورت داشتن هرگونه مشکلی در پرداخت، لطفا با پشتیبانی تلگرام در ارتباط باشید.

۲- برای خرید محصولات لطفا به شماره محصول و عنوان دقت کنید.

۳- شما می توانید فایلها را روی نرم افزارهای مختلف اجرا کنید(هیچگونه کد یا قفلی روی فایلها وجود ندارد).

۴- بعد از خرید، محصول مورد نظر از صفحه محصول قابل دانلود خواهد بود همچنین به ایمیل شما ارسال می شود.

۵- در صورت وجود هر مشکلی در فرایند خرید با تماس بگیرید.