Python for Algorithmic Trading: From Idea to Cloud Deployment - Original PDF

دانلود کتاب Python for Algorithmic Trading: From Idea to Cloud Deployment - Original PDF

Author: Yves Hilpisch

5 (1)

توضیحات کتاب :

Algorithmic trading, once the exclusive domain of institutional players, is now open to small organizations and individual traders using online platforms. The tool of choice for many traders today is Python and its ecosystem of powerful packages. In this practical book, author Yves Hilpisch shows students, academics, and practitioners how to use Python in the fascinating field of algorithmic trading. You'll learn several ways to apply Python to different aspects of algorithmic trading, such as backtesting trading strategies and interacting with online trading platforms. Some of the biggest buy- and sell-side institutions make heavy use of Python. By exploring options for systematically building and deploying automated algorithmic trading strategies, this book will help you level the playing field. • Set up a proper Python environment for algorithmic trading • Learn how to retrieve financial data from public and proprietary data sources • Explore vectorization for financial analytics with NumPy and pandas • Master vectorized backtesting of different algorithmic trading strategies • Generate market predictions by using machine learning and deep learning • Tackle real-time processing of streaming data with socket programming tools • Implement automated algorithmic trading strategies with the OANDA and FXCM trading platforms

سرچ در وردکت | سرچ در گودریدز | سرچ در اب بوکز | سرچ در آمازون | سرچ در گوگل بوک

704 بازدید 3 خرید

ضمانت بازگشت

ضمانت بازگشت

فایل های تست شده

فایل های تست شده

پرداخت آنلاین

پرداخت آنلاین

تضمین کیفیت

تضمین کیفیت

دانلود فوری

دانلود فوری

This book is for students, academics, and practitioners alike who want to apply Python in the fascinating field of algorithmic trading. The book assumes that the reader has, at least on a fundamental level, background knowledge in both Python programming and in financial trading. For reference and review, the Appendix intro‐ duces important Python, NumPy, matplotlib, and pandas topics. The following are good references to get a sound understanding of the Python topics important for this book. Most readers will benefit from having at least access to Hilpisch (2018) for ref‐ erence. With regard to the machine and deep learning approaches applied to algorith‐ mic trading, Hilpisch (2020) provides a wealth of background information and a larger number of specific examples. Background information about Python as applied to finance, financial data science, and artificial intelligence can be found in the following books: Hilpisch, Yves. 2018. Python for Finance: Mastering Data-Driven Finance. 2nd ed. Sebastopol: O’Reilly. ⸻. 2020. Artificial Intelligence in Finance: A Python-Based Guide. Sebastopol: O’Reilly. McKinney, Wes. 2017. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. 2nd ed. Sebastopol: O’Reilly. Ramalho, Luciano. 2021. Fluent Python: Clear, Concise, and Effective Programming. 2nd ed. Sebastopol: O’Reilly. VanderPlas, Jake. 2016. Python Data Science Handbook: Essential Tools for Working with Data. Sebastopol: O’Reilly

چکیده فارسی

 

این کتاب برای دانشجویان، دانشگاهیان و متخصصانی است که می‌خواهند پایتون را در زمینه جذاب تجارت الگوریتمی به کار ببرند. این کتاب فرض می‌کند که خواننده، حداقل در سطح بنیادی، دانش پس‌زمینه‌ای در برنامه‌نویسی پایتون و تجارت مالی دارد. برای مرجع و بررسی، ضمیمه موضوعات مهم پایتون، NumPy، matplotlib و پانداها را معرفی می‌کند. موارد زیر مراجع خوبی برای درک درستی از موضوعات مهم پایتون برای این کتاب است. اکثر خوانندگان از حداقل دسترسی به Hilpisch (2018) برای ارجاع سود خواهند برد. با توجه به رویکردهای یادگیری ماشینی و عمیق به کار رفته در تجارت الگوریتمی، هیلپیش (2020) اطلاعات پس زمینه و تعداد زیادی مثال خاص را ارائه می دهد. اطلاعات پیش‌زمینه در مورد پایتون به‌عنوان کاربردی در امور مالی، علوم داده‌های مالی و هوش مصنوعی را می‌توان در کتاب‌های زیر یافت: Hilpisch، Yves. 2018. Python for Finance: Mastering Data-Driven Finance. ویرایش دوم سباستوپل: اوریلی. ⸻. 2020. هوش مصنوعی در امور مالی: راهنمای مبتنی بر پایتون. سباستوپل: اوریلی. مک‌کینی، وس. 2017. پایتون برای تجزیه و تحلیل داده ها: جدال داده ها با پانداها، NumPy و IPython. ویرایش دوم سباستوپل: اوریلی. رامالیو، لوسیانو. 2021. Python روان: برنامه نویسی واضح، مختصر و موثر. ویرایش دوم سباستوپل: اوریلی. واندرپلاس، جیک. 2016. کتاب علوم داده پایتون: ابزارهای ضروری برای کار با داده ها. سباستوپل: O’Reilly

 

ادامه ...

Author(s): Yves Hilpisch

Publisher: O'Reilly Media, Year: 2020

ISBN: 149205335X,9781492053354

ادامه ...

Contents and Structure Here’s a quick overview of the topics and contents presented in each chapter. Chapter 1, Python and Algorithmic Trading The first chapter is an introduction to the topic of algorithmic trading—that is, the automated trading of financial instruments based on computer algorithms. It discusses fundamental notions in this context and also addresses, among other things, what the expected prerequisites for reading the book are. Chapter 2, Python Infrastructure This chapter lays the technical foundations for all subsequent chapters in that it shows how to set up a proper Python environment. This chapter mainly uses conda as a package and environment manager. It illustrates Python deployment via Docker containers and in the cloud. Chapter 3, Working with Financial Data Financial time series data is central to every algorithmic trading project. This chapter shows you how to retrieve financial data from different public data and proprietary data sources. It also demonstrates how to store financial time series data efficiently with Python. Chapter 4, Mastering Vectorized Backtesting Vectorization is a powerful approach in numerical computation in general and for financial analytics in particular. This chapter introduces vectorization with NumPy and pandas and applies that approach to the backtesting of SMA-based, momentum, and mean-reversion strategies. Preface | xi Chapter 5, Predicting Market Movements with Machine Learning This chapter is dedicated to generating market predictions by the use of machine learning and deep learning approaches. By mainly relying on past return obser‐ vations as features, approaches are presented for predicting tomorrow’s market direction by using such Python packages as Keras in combination with Tensor Flow and scikit-learn. Chapter 6, Building Classes for Event-Based Backtesting While vectorized backtesting has advantages when it comes to conciseness of code and performance, it’s limited with regard to the representation of certain market features of trading strategies. On the other hand, event-based backtesting, technically implemented by the use of object oriented programming, allows for a rather granular and more realistic modeling of such features. This chapter presents and explains in detail a base class as well as two classes for the backtest‐ ing of long-only and long-short trading strategies. Chapter 7, Working with Real-Time Data and Sockets Needing to cope with real-time or streaming data is a reality even for the ambi‐ tious individual algorithmic trader. The tool of choice is socket programming, for which this chapter introduces ZeroMQ as a lightweight and scalable technology. The chapter also illustrates how to make use of Plotly to create nice looking, interactive streaming plots. Chapter 8, CFD Trading with Oanda Oanda is a foreign exchange (forex, FX) and Contracts for Difference (CFD) trading platform offering a broad set of tradable instruments, such as those based on foreign exchange pairs, stock indices, commodities, or rates instruments (benchmark bonds). This chapter provides guidance on how to implement auto‐ mated algorithmic trading strategies with Oanda, making use of the Python wrapper package tpqoa. Chapter 9, FX Trading with FXCM FXCM is another forex and CFD trading platform that has recently released a modern RESTful API for algorithmic trading. Available instruments span multi‐ ple asset classes, such as forex, stock indices, or commodities. A Python wrapper package that makes algorithmic trading based on Python code rather convenient and efficient is available (http://fxcmpy.tpq.io). Chapter 10, Automating Trading Operations This chapter deals with capital management, risk analysis and management, as well as with typical tasks in the technical automation of algorithmic trading oper‐ ations. It covers, for instance, the Kelly criterion for capital allocation and leverage in detail

ادامه ...
برای ارسال نظر لطفا وارد شوید یا ثبت نام کنید
ادامه ...
پشتیبانی محصول

۱- در صورت داشتن هرگونه مشکلی در پرداخت، لطفا با پشتیبانی تلگرام در ارتباط باشید.

۲- برای خرید محصولات لطفا به شماره محصول و عنوان دقت کنید.

۳- شما می توانید فایلها را روی نرم افزارهای مختلف اجرا کنید(هیچگونه کد یا قفلی روی فایلها وجود ندارد).

۴- بعد از خرید، محصول مورد نظر از صفحه محصول قابل دانلود خواهد بود همچنین به ایمیل شما ارسال می شود.

۵- در صورت وجود هر مشکلی در فرایند خرید با تماس بگیرید.