Handbook of High-Frequency Trading and Modeling in Finance - Original PDF

دانلود کتاب Handbook of High-Frequency Trading and Modeling in Finance - Original PDF

Author: Ionut Florescu, Maria C. Mariani, H. Eugene Stanley, Frederi G. Viens (eds.)

0 (0)

توضیحات کتاب :

Reflecting the fast pace and ever-evolving nature of the financial industry, the Handbook of High-Frequency Trading and Modeling in Finance details how high-frequency analysis presents new systematic approaches to implementing quantitative activities with high-frequency financial data. Introducing new and established mathematical foundations necessary to analyze realistic market models and scenarios, the handbook begins with a presentation of the dynamics and complexity of futures and derivatives markets as well as a portfolio optimization problem using quantum computers. Subsequently, the handbook addresses estimating complex model parameters using high-frequency data. Finally, the handbook focuses on the links between models used in financial markets and models used in other research areas such as geophysics, fossil records, and earthquake studies. The Handbook of High-Frequency Trading and Modeling in Finance also features: • Contributions by well-known experts within the academic, industrial, and regulatory fields • A well-structured outline on the various data analysis methodologies used to identify new trading opportunities • Newly emerging quantitative tools that address growing concerns relating to high-frequency data such as stochastic volatility and volatility tracking; stochastic jump processes for limit-order books and broader market indicators; and options markets • Practical applications using real-world data to help readers better understand the presented material The Handbook of High-Frequency Trading and Modeling in Finance is an excellent reference for professionals in the fields of business, applied statistics, econometrics, and financial engineering. The handbook is also a good supplement for graduate and MBA-level courses on quantitative finance, volatility, and financial econometrics. Ionut Florescu, PhD, is Research Associate Professor in Financial Engineering and Director of the Hanlon Financial Systems Laboratory at Stevens Institute of Technology. His research interests include stochastic volatility, stochastic partial differential equations, Monte Carlo Methods, and numerical methods for stochastic processes. Dr. Florescu is the author of Probability and Stochastic Processes, the coauthor of Handbook of Probability, and the coeditor of Handbook of Modeling High-Frequency Data in Finance, all published by Wiley. Maria C. Mariani, PhD, is Shigeko K. Chan Distinguished Professor in Mathematical Sciences and Chair of the Department of Mathematical Sciences at The University of Texas at El Paso. Her research interests include mathematical finance, applied mathematics, geophysics, nonlinear and stochastic partial differential equations and numerical methods. Dr. Mariani is the coeditor of Handbook of Modeling High-Frequency Data in Finance, also published by Wiley. H. Eugene Stanley, PhD, is William Fairfield Warren Distinguished Professor at Boston University. Stanley is one of the key founders of the new interdisciplinary field of econophysics, and has an ISI Hirsch index H=128 based on more than 1200 papers. In 2004 he was elected to the National Academy of Sciences. Frederi G. Viens, PhD, is Professor of Statistics and Mathematics and Director of the Computational Finance Program at Purdue University. He holds more than two dozen local, regional, and national awards and he travels extensively on a world-wide basis to deliver lectures on his research interests, which range from quantitative finance to climate science and agricultural economics. A Fellow of the Institute of Mathematics Statistics, Dr. Viens is the coeditor of Handbook of Modeling High-Frequency Data in Finance, also published by Wiley.

سرچ در وردکت | سرچ در گودریدز | سرچ در اب بوکز | سرچ در آمازون | سرچ در گوگل بوک

675 بازدید 1 خرید

ضمانت بازگشت

ضمانت بازگشت

فایل های تست شده

فایل های تست شده

پرداخت آنلاین

پرداخت آنلاین

تضمین کیفیت

تضمین کیفیت

دانلود فوری

دانلود فوری

High-frequency data in finance is often characterized by fast fluctuations and noise (see, e.g., [7]), a trait that is known to make the volatility of the data very hard to estimate (see, e.g., [13]). Although this characteristic creates many challenges in modeling, it offers itself to the study of distin- guishing “signal” from “noise,” a topic of interest in the area of quickest detection (see [25], [5]). One of the most popular algorithms used in quick- est detection is known as the cumulative sum (CUSUM) stopping rule first introduced by Page [24]. In this work, we employ a sequence of CUSUM stopping rules to construct an online trading strategy. This strategy takes advantage of the relatively frequent number of alarms CUSUM stopping times may provide when applied to high-frequency data as a result of the fast fluctuations present therein. The trading strategy implemented settles frequently and thus eliminates the risk of large positions

چکیده فارسی

 

داده‌های با بسامد بالا در امور مالی اغلب با نوسانات سریع و نویز مشخص می‌شوند (به عنوان مثال، [7] مراجعه کنید)، ویژگی‌ای که مشخص است تخمین بی‌ثباتی داده‌ها را بسیار سخت می‌کند (به عنوان مثال، [13] را ببینید. ]). اگرچه این ویژگی چالش‌های زیادی را در مدل‌سازی ایجاد می‌کند، اما خود را به مطالعه تشخیص «سیگنال» از «نویز»، موضوعی مورد علاقه در حوزه سریع‌ترین تشخیص، ارائه می‌کند (نگاه کنید به [25]، [5]). یکی از محبوب‌ترین الگوریتم‌های مورد استفاده در سریع‌ترین تشخیص، به عنوان قانون توقف مجموع تجمعی (CUSUM) شناخته می‌شود که اولین بار توسط صفحه [24] معرفی شد. در این کار، ما از دنباله ای از قوانین توقف CUSUM برای ایجاد یک استراتژی تجارت آنلاین استفاده می کنیم. این استراتژی از تعداد نسبتاً مکرر آلارم‌هایی که زمان توقف CUSUM ممکن است هنگام اعمال بر داده‌های فرکانس بالا در نتیجه نوسانات سریع موجود در آن ایجاد کند، بهره می‌برد. استراتژی معاملاتی اجرا شده به طور مکرر تسویه می شود و بنابراین خطر موقعیت های بزرگ

را از بین می برد

 

ادامه ...

Author(s): Ionut Florescu, Maria C. Mariani, H. Eugene Stanley, Frederi G. Viens (eds.)

Series: Wiley Handbooks in Financial Engineering and Econometrics

Publisher: Wiley, Year: 2016

ISBN: 1118443985,9781118443989

ادامه ...

vi Contents 3 A Nonlinear Lead Lag Dependence Analysis of Energy Futures: Oil, Coal, and Natural Gas 61 Germ ́an G. Creamer and Bernardo Creamer 3.1 Introduction 61 3.1.1 Causality analysis 62 3.2 Data 64 3.3 Estimation techniques 64 3.4 Results 65 3.5 Discussion 67 3.6 Conclusions 69 Acknowledgments 69 References 70 4 Portfolio Optimization: Applications in Quantum Computing 73 Michael Marzec 4.1 Introduction 73 4.2 Background 75 4.2.1 Portfolios and optimization 76 4.2.2 Algorithmic complexity 77 4.2.3 Performance 78 4.2.4 Ising model 79 4.2.5 Adiabatic quantum computing 79 4.3 The models 80 4.3.1 Financial model 81 4.3.2 Graph-theoretic combinatorial optimization models 82 4.3.3 Ising and Qubo models 83 4.3.4 Mixed models 84 4.4 Methods 84 4.4.1 Model implementation 85 4.4.2 Input data 85 4.4.3 Mean-variance calculations 85 4.4.4 Implementing the risk measure 86 4.4.5 Implementation mapping 86 4.5 Results 88 4.5.1 The simple correlation model 88 4.5.2 The restricted minimum-risk model 91 4.5.3 The WMIS minimum-risk, max return model 94 Contents vii 4.6 Discussion 95 4.6.1 Hardware limitations 97 4.6.2 Model limitations 97 4.6.3 Implementation limitations 98 4.6.4 Future research 98 4.7 Conclusion 100 Acknowledgments 100 Appendix 4.A: WMIS Matlab Code 100 References 103 5 Estimation Procedure for Regime Switching Stochastic Volatility Model and Its Applications 107 Ionut Florescu and Forrest Levin 5.1 Introduction 107 5.1.1 The original motivation 108 5.1.2 The model and the problem 108 5.1.3 A brief historical note 109 5.2 The methodology 110 5.2.1 Obtaining filtered empirical distributions at t1 , ... , t T 110 5.2.2 Obtaining the parameters of the Markov chain 112 5.3 Results obtained applying the model to real data 113 5.3.1 Part i: financial applications 113 5.3.2 Part ii: physical data application. temperature data 119 5.3.3 Part iii: analysis of seismometer readings during an earthquake 121 5.3.4 Analysis of the earthquake signal: beginning 123 5.3.5 Analysis: during the earthquake 125 5.3.6 Analysis: end of the earthquake signal, aftershocks 127 5.4 Conclusion 127 5.A Theoretical results and empirical testing 128 5.A.1 How does the particle filter work? 128 5.A.2 Theoretical results about convergence and parameter estimates 129 5.A.3 Markov chain parameter estimates 131 5.A.4 Empirical testing 132 5.A.5 A list of supplementary documents 133 References 133 viii Contents 6 Detecting Jumps in High-Frequency Prices Under Stochastic Volatility: A Review and a Data-Driven Approach 137 Ping-Chen Tsai and Mark B. Shackleton 6.1 Introduction 137 6.2 Review on the intraday jump tests 140 6.2.1 Realized volatility measure and the BNS tests 140 6.2.2 The ABD and LM tests 142 6.3 A data-driven testing procedure 146 6.3.1 Spy data and microstructure noise 146 6.3.2 A generalized testing procedure 149 6.4 Simulation study 153 6.4.1 Model specification 153 6.4.2 Simulation results 158 6.5 Empirical results 161 6.5.1 Results on the backward-looking test 162 6.5.2 Results on the interpolated test 165 6.6 Conclusion 165 Acknowledgments 166 Appendix 6.A: Least-square estimation of HAR-MA (2) model for log(BP) of SPY 167 Appendix 6.B: Estimation of ARMA (2, 1) model for log(BP) of SPY 168 Appendix 6.C: Minimized loss function loss(𝜌1 , 𝜌2 ) for SV2FJ_2𝜌 model, SPY 169 Appendix 6.D.1: Calibration of 𝜉 under SV2FJ_2𝜌 model at 2-min frequency, E[Nt] = 0.08 170 Appendix 6.D.2: Calibration of 𝜉 under SV2FJ_2𝜌 model at 2-min frequency, E[Nt] = 0.40 171 Appendix 6.D.3: Calibration of 𝜉 under SV2FJ_2𝜌 model at 5-min frequency, E[Nt] = 0.08 172 Appendix 6.D.4: Calibration of 𝜉 under SV2FJ_2𝜌 Model at 5-min frequency, E[Nt] = 0.40 173 Appendix 6.D.5: Calibration of 𝜉 under SV2FJ_2𝜌 model at 10-min frequency, E[Nt] = 0.08 174 Appendix 6.D.6: Calibration of 𝜉 under SV2FJ_2𝜌 model at 10-min frequency, E[Nt] = 0.40 175 References 175 Contents ix 7 Hawkes Processes and Their Applications to High-Frequency Data Modeling 183 Baron Law and Frederi G. Viens 7.1 Introduction 183 7.2 Point processes 184 7.3 Hawkes processes 186 7.3.1 Branching structure representation 188 7.3.2 Stationarity 188 7.3.3 Convergence 189 7.4 Statistical inference of Hawkes processes 191 7.4.1 Simulation 191 7.4.2 Estimation 194 7.4.3 Hypothesis testing 197 7.5 Applications of Hawkes processes 198 7.5.1 Modeling order arrivals 199 7.5.2 Modeling price jumps 200 7.5.3 Modeling jump-diffusion 205 7.5.4 Measuring endogeneity (Reflexivity) 205 Appendix 7.A: Point Processes 207 7.A.1 Definition 207 7.A.2 Moments 208 7.A.3 Marked point processes 209 7.A.4 Stochastic intensity 209 7.A.5 Random time change 211 Appendix 7.B: A Brief History of Hawkes processes 211 References 212 8 Multifractal Random Walk Driven by a Hermite Process 221 Alexis Fauth and Ciprian A. Tudor 8.1 Introduction 221 8.2 Preliminaries 224 8.2.1 Fractional brownian motion and hermite processes 224 8.2.2 Wiener integrals with respect to the hermite process 226 8.2.3 Infinitely divisible cascading noise 229 8.3 Multifractal random walk driven by a Hermite process 231 8.3.1 Definition and existence 231 8.3.2 Properties of the hermite multifractal random walk 233 x Contents 8.4 Financial applications 234 8.4.1 Simulation of the Hmrw 235 8.4.2 Financial statistics 241 8.5 Concluding remarks 243 References 247 9 Interpolating Techniques and Nonparametric Regression Methods Applied to Geophysical and Financial Data Analysis 251 K. Basu and Maria C. Mariani 9.1 Introduction 251 9.2 Nonparametric regression models 253 9.2.1 Local polynomial regression 255 9.2.2 Lowess/loess method 257 9.2.3 Numerical applications 259 9.3 Interpolation methods 271 9.3.1 Nearest-neighbor interpolation 271 9.3.2 Bilinear interpolation 272 9.3.3 Bicubic interpolation 276 9.3.4 Biharmonic interpolation 277 9.3.5 Thin plate splines 282 9.3.6 Numerical applications 285 9.4 Conclusion 287 Acknowledgments 292 References 292 10 Study of Volatility Structures in Geophysics and Finance Using Garch Models 295 Maria C. Mariani, F. Biney, and I. SenGupta 10.1 Introduction 295 10.2 Short memory models 297 10.2.1 ARMA(p,q) model 297 10.2.2 GARCH(p,q) model 297 10.2.3 IGARCH(1,1) model 298 10.3 Long memory models 298 10.3.1 ARFIMA(p,d,q) model 299 10.3.2 ARFIMA(p,d,q)-GARCH(r,s) 299 10.3.3 Intermediate memory process 300 10.3.4 Figarch model 300 Contents xi 10.4 Detection and estimation of long memory 302 10.4.1 Augmented dickey–fuller test(ADF test) 302 10.4.2 KPSS test 303 10.4.3 Whittle method 304 10.5 Data collection, analysis, and result 306 10.5.1 Analysis on dow Jones index (DJIA) returns 306 10.5.2 Model selection and specification: conditional mean 306 10.5.3 Conditional mean model (returns) 309 10.5.4 Model diagnostics: ARMA(2, 2) 309 10.5.5 Test for ARCH effect 311 10.5.6 Model selection and specification: Conditional variance 313 10.5.7 Standardized residuals test 314 10.5.8 Model diagnostics 314 10.5.9 Returns and variance equation 315 10.5.10 standardized residuals test 317 10.5.11 Model diagnostic of conditional returns with conditional variance 318 10.5.12 One-step ahead prediction of last 10 observations 330 10.5.13 Analysis on high-frequency, earthquake, and explosives series 330 10.6 Discussion and conclusion 335 References 337 11 Scale Invariance and L ́evy Models Applied to Earthquakes and Financial High-Frequency Data 341 M. P. Beccar-Varela, Ionut Florescu, and I. SenGupta 11.1 Introduction 341 11.2 Governing equations for the deterministic model 342 11.2.1 Application to geophysical (earthquake data) 343 11.2.2 Results 344 11.3 L ́evy flights and application to geophysics 345 11.3.1 Truncated L ́evy flight distribution 353 11.3.2 Results 356 xii Contents 11.4 Application to the high-frequency market data 360 11.4.1 Methodology 360 11.4.2 Results 361 11.5 Brief program code description 362 11.6 Conclusion 364 11.A Appendix 366 11.A.1 Stable distributions 366 11.A.2 Characterization of stable distributions 367 References 368 12 Analysis of Generic Diversity in the Fossil Record, Earthquake Series, and High-Frequency Financial Data 371 M. P. Beccar Varela, F. Biney, Maria C. Mariani, I. SenGupta, M. Shpak, and P. Bezdek 12.1 Introduction 371 12.2 Statistical preliminaries and results 373 12.2.1 Sum of exponential random variables with different parameters 374 12.3 Statistical and numerical analysis 377 12.4 Analysis with L ́evy distribution 380 12.4.1 Characterization of Stable Distributions 383 12.4.2 Truncated L ́evy flight (TLF) distribution 384 12.4.3 Data analysis with TLF distribution 389 12.4.4 Sum of L ́evy random variables with different parameters 390 12.5 Analysis of the Stock Indices, high-frequency (tick) data, and explosive series 394 12.6 Results and discussion 409 Acknowledgments 421 12.A Appendix A—Big ‘O’ notation 421 References 422 Index 425

ادامه ...
برای ارسال نظر لطفا وارد شوید یا ثبت نام کنید
ادامه ...
پشتیبانی محصول

۱- در صورت داشتن هرگونه مشکلی در پرداخت، لطفا با پشتیبانی تلگرام در ارتباط باشید.

۲- برای خرید محصولات لطفا به شماره محصول و عنوان دقت کنید.

۳- شما می توانید فایلها را روی نرم افزارهای مختلف اجرا کنید(هیچگونه کد یا قفلی روی فایلها وجود ندارد).

۴- بعد از خرید، محصول مورد نظر از صفحه محصول قابل دانلود خواهد بود همچنین به ایمیل شما ارسال می شود.

۵- در صورت وجود هر مشکلی در فرایند خرید با تماس بگیرید.