Foundations of Materials Science and Engineering (6th Edition) - Original PDF

دانلود کتاب Foundations of Materials Science and Engineering (6th Edition) - Original PDF

Author: William F. Smith Professor, Javad Hashemi Prof

0 (0)

توضیحات کتاب :

To prepare materials engineers and scientists of the future, Foundations of Materials Science and Engineering, Sixth Edition is designed to present diverse top¬ics in the field with appropriate breadth and depth

سرچ در وردکت | سرچ در گودریدز | سرچ در اب بوکز | سرچ در آمازون | سرچ در گوگل بوک

1,417 بازدید 2 خرید

ضمانت بازگشت

ضمانت بازگشت

فایل های تست شده

فایل های تست شده

پرداخت آنلاین

پرداخت آنلاین

تضمین کیفیت

تضمین کیفیت

دانلود فوری

دانلود فوری

To prepare materials engineers and scientists of the future, Foundations of Materials Science and Engineering, Sixth Edition is designed to present diverse top¬ics in the field with appropriate breadth and depth. The strength of the book is in its balanced presentation of concepts in science of materials (basic knowledge) and engi¬neering of materials (applied knowledge). The basic and applied concepts are inte¬grated through concise textual explanations, relevant and stimulating imagery, detailed sample problems, electronic supplements, and homework problems. This textbook is therefore suitable for both an introductory course in materials at the sophomore level and a more advanced (junior/senior level) second course in materials science and engi¬neering.
چکیده فارسی

برای آماده سازی مهندسین مواد و دانشمندان آینده، مبانی علم و مهندسی مواد، ویرایش ششم برای ارائه موضوعات متنوع در این زمینه با وسعت و عمق مناسب طراحی شده است. نقطه قوت کتاب در ارائه متعادل مفاهیم در علم مواد (دانش پایه) و مهندسی مواد (دانش کاربردی) است. مفاهیم پایه و کاربردی از طریق توضیحات متنی مختصر، تصاویر مرتبط و محرک، مسائل نمونه دقیق، مکمل های الکترونیکی و مشکلات تکالیف ادغام می شوند. بنابراین، این کتاب درسی هم برای دوره مقدماتی مواد در سطح دوم و هم برای دوره دوم پیشرفته تر (سطح جوانی/ ارشد) در علم و مهندسی مواد مناسب است.

ادامه ...

Ebook details:
عنوان: Foundations of Materials Science and Engineering (9781259696558) William F. Smith Professor, Javad Hashemi Prof.
نویسنده: Books
ناشر: McGraw-Hill Education; 6 edition (January 26, 2018)
زبان: English
شابک: 1259696553, 978-1259696558

 

9781260049183 1260049183


حجم: 74 Mb
فرمت: True Pdf

ادامه ...

Cover Title Copyright About the Authors Table of Contents Preface About the Cover Connect Foundations of Materials Science and Engineering Chapter 1: Introduction to Materials Science and Engineering 1.1 Materials and Engineering 1.2 Materials Science and Engineering 1.3 Types of Materials 1.3.1 Metallic Materials 1.3.2 Polymeric Materials 1.3.3 Ceramic Materials 1.3.4 Composite Materials 1.3.5 Electronic Materials 1.4 Competition Among Materials 1.5 Recent Advances in Materials Science and Technology and Future Trends 1.5.1 Smart Materials 1.5.2 Nanomaterials 1.6 Design and Selection 1.7 Summary 1.8 Definitions 1.9 Problems Chapter 2: Atomic Structure and Bonding 2.1 Atomic Structure and Subatomic Particles 2.2 Atomic Numbers, Mass Numbers, and Atomic Masses 2.2.1 Atomic Numbers and Mass Numbers 2.3 The Electronic Structure of Atoms 2.3.1 Planck’s Quantum Theory and Electromagnetic Radiation 2.3.2 Bohr’s Theory of the Hydrogen Atom 2.3.3 The Uncertainty Principle and Schrödinger’s Wave Functions 2.3.4 Quantum Numbers, Energy Levels, and Atomic Orbitals 2.3.5 The Energy State of Multielectron Atoms 2.3.6 The Quantum-Mechanical Model and the Periodic Table 2.4 Periodic Variations in Atomic Size, Ionization Energy, and Electron Affinity 2.4.1 Trends in Atomic Size 2.4.2 Trends in Ionization Energy 2.4.3 Trends in Electron Affinity 2.4.4 Metals, Metalloids, and Nonmetals 2.5 Primary Bonds 2.5.1 Ionic Bonds 2.5.2 Covalent Bonds 2.5.3 Metallic Bonds 2.5.4 Mixed Bonding 2.6 Secondary Bonds 2.7 Summary 2.8 Definitions 2.9 Problems Chapter 3: Crystal and Amorphous Structure in Materials 3.1 The Space Lattice and Unit Cells 3.2 Crystal Systems and Bravais Lattices 3.3 Principal Metallic Crystal Structures 3.3.1 Body-Centered Cubic (BCC) Crystal Structure 3.3.2 Face-Centered Cubic (FCC) Crystal Structure 3.3.3 Hexagonal Close-Packed (HCP) Crystal Structure 3.4 Atom Positions in Cubic Unit Cells 3.5 Directions in Cubic Unit Cells 3.6 Miller Indices for Crystallographic Planes in Cubic Unit Cells 3.7 Crystallographic Planes and Directions in Hexagonal Crystal Structure 3.7.1 Indices for Crystal Planes in HCP Unit Cells 3.7.2 Direction Indices in HCP Unit Cells 3.8 Comparison of FCC, HCP, and BCC Crystal Structures 3.8.1 FCC and HCP Crystal Structures 3.8.2 BCC Crystal Structure 3.9 Volume, Planar, and Linear Density Unit-Cell Calculations 3.9.1 Volume Density 3.9.2 Planar Atomic Density 3.9.3 Linear Atomic Density and Repeat Distance 3.10 Polymorphism or Allotropy 3.11 Crystal Structure Analysis 3.11.1 X-Ray Sources 3.11.2 X-Ray Diffraction 3.11.3 X-Ray Diffraction Analysis of Crystal Structures 3.12 Amorphous Materials 3.13 Summary 3.14 Definitions 3.15 Problems Chapter 4: Solidification and Crystalline Imperfections 4.1 Solidification of Metals 4.1.1 The Formation of Stable Nuclei in Liquid Metals 4.1.2 Growth of Crystals in Liquid Metal and Formation of a Grain Structure 4.1.3 Grain Structure of Industrial Castings 4.2 Solidification of Single Crystals 4.3 Metallic Solid Solutions 4.3.1 Substitutional Solid Solutions 4.3.2 Interstitial Solid Solutions 4.4 Crystalline Imperfections 4.4.1 Point Defects 4.4.2 Line Defects (Dislocations) 4.4.3 Planar Defects 4.4.4 Volume Defects 4.5 Experimental Techniques for Identification of Microstructure and Defects 4.5.1 Optical Metallography, ASTM Grain Size, and Grain Diameter Determination 4.5.2 Scanning Electron Microscopy (SEM) 4.5.3 Transmission Electron Microscopy (TEM) 4.5.4 High-Resolution Transmission Electron Microscopy (HRTEM) 4.5.5 Scanning Probe Microscopes and Atomic Resolution 4.6 Summary 4.7 Definitions 4.8 Problems Chapter 5: Thermally Activated Processes and Diffusion in Solids 5.1 Rate Processes in Solids 5.2 Atomic Diffusion in Solids 5.2.1 Diffusion in Solids in General 5.2.2 Diffusion Mechanisms 5.2.3 Steady-State Diffusion 5.2.4 Non–Steady-State Diffusion 5.3 Industrial Applications of Diffusion Processes 5.3.1 Case Hardening of Steel by Gas Carburizing 5.3.2 Impurity Diffusion into Silicon Wafers for Integrated Circuits 5.4 Effect of Temperature on Diffusion in Solids 5.5 Summary 5.6 Definitions 5.7 Problems Chapter 6: Mechanical Properties of Metals I 6.1 The Processing of Metals and Alloys 6.1.1 The Casting of Metals and Alloys 6.1.2 Hot and Cold Rolling of Metals and Alloys 6.1.3 Extrusion of Metals and Alloys 6.1.4 Forging 6.1.5 Other Metal-Forming Processes 6.2 Stress and Strain in Metals 6.2.1 Elastic and Plastic Deformation 6.2.2 Engineering Stress and Engineering Strain 6.2.3 Poisson’s Ratio 6.2.4 Shear Stress and Shear Strain 6.3 The Tensile Test and The Engineering Stress-Strain Diagram 6.3.1 Mechanical Property Data Obtained from the Tensile Test and the Engineering Stress-Strain Diagram 6.3.2 Comparison of Engineering Stress-Strain Curves for Selected Alloys 6.3.3 True Stress and True Strain 6.4 Hardness and Hardness Testing 6.5 Plastic Deformation of Metal Single Crystals 6.5.1 Slipbands and Slip Lines on the Surface of Metal Crystals 6.5.2 Plastic Deformation in Metal Crystals by the Slip Mechanism 6.5.3 Slip Systems 6.5.4 Critical Resolved Shear Stress for Metal Single Crystals 6.5.5 Schmid’s Law 6.5.6 Twinning 6.6 Plastic Deformation of Polycrystalline Metals 6.6.1 Effect of Grain Boundaries on the Strength of Metals 6.6.2 Effect of Plastic Deformation on Grain Shape and Dislocation Arrangements 6.6.3 Effect of Cold Plastic Deformation on Increasing the Strength of Metals 6.7 Solid-Solution Strengthening of Metals 6.8 Recovery and Recrystallization of Plastically Deformed Metals 6.8.1 Structure of a Heavily Cold-Worked Metal before Reheating 6.8.2 Recovery 6.8.3 Recrystallization 6.9 Superplasticity in Metals 6.10 Nanocrystalline Metals 6.11 Summary 6.12 Definitions 6.13 Problems Chapter 7: Mechanical Properties of Metals II 7.1 Fracture of Metals 7.1.1 Ductile Fracture 7.1.2 Brittle Fracture 7.1.3 Toughness and Impact Testing 7.1.4 Ductile-to-Brittle Transition Temperature 7.1.5 Fracture Toughness 7.2 Fatigue of Metals 7.2.1 Cyclic Stresses 7.2.2 Basic Structural Changes that Occur in a Ductile Metal in the Fatigue Process 7.2.3 Some Major Factors that Affect the Fatigue Strength of a Metal 7.3 Fatigue Crack Propagation Rate 7.3.1 Correlation of Fatigue Crack Propagation with Stress and Crack Length 7.3.2 Fatigue Crack Growth Rate versus Stress-Intensity Factor Range Plots 7.3.3 Fatigue Life Calculations 7.4 Creep and Stress Rupture of Metals 7.4.1 Creep of Metals 7.4.2 The Creep Test 7.4.3 Creep-Rupture Test 7.5 Graphical Representation of Creep- and Stress-Rupture Time-Temperature Data Using the Larsen-Miller Parameter 7.6 A Case Study In Failure of Metallic Components 7.7 Recent Advances and Future Directions in Improving The Mechanical Performance of Metals 7.7.1 Improving Ductility and Strength Simultaneously 7.7.2 Fatigue Behavior in Nanocrystalline Metals 7.8 Summary 7.9 Definitions 7.10 Problems Chapter 8: Phase Diagrams 8.1 Phase Diagrams of Pure Substances 8.2 Gibbs Phase Rule 8.3 Cooling Curves 8.4 Binary Isomorphous Alloy Systems 8.5 The Lever Rule 8.6 Nonequilibrium Solidification of Alloys 8.7 Binary Eutectic Alloy Systems 8.8 Binary Peritectic Alloy Systems 8.9 Binary Monotectic Systems 8.10 Invariant Reactions 8.11 Phase Diagrams with Intermediate Phases and Compounds 8.12 Ternary Phase Diagrams 8.13 Summary 8.14 Definitions 8.15 Problems Chapter 9: Engineering Alloys 9.1 Production of Iron and Steel 9.1.1 Production of Pig Iron in a Blast Furnace 9.1.2 Steelmaking and Processing of Major Steel Product Forms 9.2 The Iron-Carbon System 9.2.1 The Iron–Iron-Carbide Phase Diagram 9.2.2 Solid Phases in the Fe–Fe3C Phase Diagram 9.2.3 Invariant Reactions in the Fe–Fe3C Phase Diagram 9.2.4 Slow Cooling of Plain-Carbon Steels 9.3 Heat Treatment of Plain-Carbon Steels 9.3.1 Martensite 9.3.2 Isothermal Decomposition of Austenite 9.3.3 Continuous-Cooling Transformation Diagram for a Eutectoid Plain-Carbon Steel 9.3.4 Annealing and Normalizing of Plain-Carbon Steels 9.3.5 Tempering of Plain-Carbon Steels 9.3.6 Classification of Plain-Carbon Steels and Typical Mechanical Properties 9.4 Low-Alloy Steels 9.4.1 Classification of Alloy Steels 9.4.2 Distribution of Alloying Elements in Alloy Steels 9.4.3 Effects of Alloying Elements on the Eutectoid Temperature of Steels 9.4.4 Hardenability 9.4.5 Typical Mechanical Properties and Applications for Low-Alloy Steels 9.5 Aluminum Alloys 9.5.1 Precipitation Strengthening (Hardening) 9.5.2 General Properties of Aluminum and Its Production 9.5.3 Wrought Aluminum Alloys 9.5.4 Aluminum Casting Alloys 9.6 Copper Alloys 9.6.1 General Properties of Copper 9.6.2 Production of Copper 9.6.3 Classification of Copper Alloys 9.6.4 Wrought Copper Alloys 9.7 Stainless Steels 9.7.1 Ferritic Stainless Steels 9.7.2 Martensitic Stainless Steels 9.7.3 Austenitic Stainless Steels 9.8 Cast Irons 9.8.1 General Properties 9.8.2 Types of Cast Irons 9.8.3 White Cast Iron 9.8.4 Gray Cast Iron 9.8.5 Ductile Cast Irons 9.8.6 Malleable Cast Irons 9.9 Magnesium, Titanium, and Nickel Alloys 9.9.1 Magnesium Alloys 9.9.2 Titanium Alloys 9.9.3 Nickel Alloys 9.10 Special-Purpose Alloys and Applications 9.10.1 Intermetallics 9.10.2 Shape-Memory Alloys 9.10.3 Amorphous Metals 9.11 Summary 9.12 Definitions 9.13 Problems Chapter 10: Polymeric Materials 10.1 Introduction 10.1.1 Thermoplastics 10.1.2 Thermosetting Plastics (Thermosets) 10.2 Polymerization Reactions 10.2.1 Covalent Bonding Structure of an Ethylene Molecule 10.2.2 Covalent Bonding Structure of an Activated Ethylene Molecule 10.2.3 General Reaction for the Polymerization of Polyethylene and the Degree of Polymerization 10.2.4 Chain Polymerization Steps 10.2.5 Average Molecular Weight for Thermoplastics 10.2.6 Functionality of a Monomer 10.2.7 Structure of Noncrystalline Linear Polymers 10.2.8 Vinyl and Vinylidene Polymers 10.2.9 Homopolymers and Copolymers 10.2.10 Other Methods of Polymerization 10.3 Industrial Polymerization Methods 10.4 Glass Transition Temperature and Crystallinity in Thermoplastics 10.4.1 Glass Transition Temperature 10.4.2 Solidification of Noncrystalline Thermoplastics 10.4.3 Solidification of Partly Crystalline Thermoplastics 10.4.4 Structure of Partly Crystalline Thermoplastic Materials 10.4.5 Stereoisomerism in Thermoplastics 10.4.6 Ziegler and Natta Catalysts 10.5 Processing of Plastic Materials 10.5.1 Processes Used for Thermoplastic Materials 10.5.2 Processes Used for Thermosetting Materials 10.6 General-Purpose Thermoplastics 10.6.1 Polyethylene 10.6.2 Polyvinyl Chloride and Copolymers 10.6.3 Polypropylene 10.6.4 Polystyrene 10.6.5 Polyacrylonitrile 10.6.6 Styrene–Acrylonitrile (SAN) 10.6.7 ABS 10.6.8 Polymethyl Methacrylate (PMMA) 10.6.9 Fluoroplastics 10.7 Engineering Thermoplastics 10.7.1 Polyamides (Nylons) 10.7.2 Polycarbonate 10.7.3 Phenylene Oxide–Based Resins 10.7.4 Acetals 10.7.5 Thermoplastic Polyesters 10.7.6 Polyphenylene Sulfide 10.7.7 Polyetherimide 10.7.8 Polymer Alloys 10.8 Thermosetting Plastics (Thermosets) 10.8.1 Phenolics 10.8.2 Epoxy Resins 10.8.3 Unsaturated Polyesters 10.8.4 Amino Resins (Ureas and Melamines) 10.9 Elastomers (Rubbers) 10.9.1 Natural Rubber 10.9.2 Synthetic Rubbers 10.9.3 Properties of Polychloroprene Elastomers 10.9.4 Vulcanization of Polychloroprene Elastomers 10.10 Deformation and Strengthening of Plastic Materials 10.10.1 Deformation Mechanisms for Thermoplastics 10.10.2 Strengthening of Thermoplastics 10.10.3 Strengthening of Thermosetting Plastics 10.10.4 Effect of Temperature on the Strength of Plastic Materials 10.11 Creep and Fracture of Polymeric Materials 10.11.1 Creep of Polymeric Materials 10.11.2 Stress Relaxation of Polymeric Materials 10.11.3 Fracture of Polymeric Materials 10.12 Summary 10.13 Definitions 10.14 Problems Chapter 11: Ceramics 11.1 Introduction 11.2 Simple Ceramic Crystal Structures 11.2.1 Ionic and Covalent Bonding in Simple Ceramic Compounds 11.2.2 Simple Ionic Arrangements Found in Ionically Bonded Solids 11.2.3 Cesium Chloride (CsCl) Crystal Structure 11.2.4 Sodium Chloride (NaCl) Crystal Structure 11.2.5 Interstitial Sites in FCC and HCP Crystal Lattices 11.2.6 Zinc Blende (ZnS) Crystal Structure 11.2.7 Calcium Fluoride (CaF2) Crystal Structure 11.2.8 Antifluorite Crystal Structure 11.2.9 Corundum (Al2O3) Crystal Structure 11.2.10 Spinel (MgAl2O4) Crystal Structure 11.2.11 Perovskite (CaTiO3) Crystal Structure 11.2.12 Carbon and Its Allotropes 11.3 Silicate Structures 11.3.1 Basic Structural Unit of the Silicate Structures 11.3.2 Island, Chain, and Ring Structures of Silicates 11.3.3 Sheet Structures of Silicates 11.3.4 Silicate Networks 11.4 Processing of Ceramics 11.4.1 Materials Preparation 11.4.2 Forming 11.4.3 Thermal Treatments 11.5 Traditional and Structural Ceramics 11.5.1 Traditional Ceramics 11.5.2 Structural Ceramics 11.6 Mechanical Properties of Ceramics 11.6.1 General 11.6.2 Mechanisms for the Deformation of Ceramic Materials 11.6.3 Factors Affecting the Strength of Ceramic Materials 11.6.4 Toughness of Ceramic Materials 11.6.5 Transformation Toughening of Partially Stabilized Zirconia (PSZ) 11.6.6 Fatigue Failure of Ceramics 11.6.7 Ceramic Abrasive Materials 11.7 Thermal Properties of Ceramics 11.7.1 Ceramic Refractory Materials 11.7.2 Acidic Refractories 11.7.3 Basic Refractories 11.7.4 Ceramic Tile Insulation for the Space Shuttle Orbiter 11.8 Glasses 11.8.1 Definition of a Glass 11.8.2 Glass Transition Temperature 11.8.3 Structure of Glasses 11.8.4 Compositions of Glasses 11.8.5 Viscous Deformation of Glasses 11.8.6 Forming Methods for Glasses 11.8.7 Tempered Glass 11.8.8 Chemically Strengthened Glass 11.9 Ceramic Coatings and Surface Engineering 11.9.1 Silicate Glasses 11.9.2 Oxides and Carbides 11.10 Nanotechnology and Ceramics 11.11 Summary 11.12 Definitions 11.13 Problems Chapter 12: Composite Materials 12.1 Introduction 12.1.1 Classification of Composite Materials 12.1.2 Advantages and Disadvantages of Composite Materials over Conventional Materials 12.2 Fibers for Reinforced-Plastic Composite Materials 12.2.1 Glass Fibers for Reinforcing Plastic Resins 12.2.2 Carbon Fibers for Reinforced Plastics 12.2.3 Aramid Fibers for Reinforcing Plastic Resins 12.2.4 Comparison of Mechanical Properties of Carbon, Aramid, and Glass Fibers for Reinforced-Plastic Composite Materials 12.3 Matrix Materials for Composites 12.4 Fiber-Reinforced Plastic Composite Materials 12.4.1 Fiberglass-Reinforced Plastics 12.4.2 Carbon Fiber–Reinforced Epoxy Resins 12.5 Equations for Elastic Modulus of Composite Laminates: Isostrain and Isostress Conditions 12.5.1 Isostrain Conditions 12.5.2 Isostress Conditions 12.6 Open-Mold Processes for Fiber-Reinforced Plastic Composite Materials 12.6.1 Hand Lay-Up Process 12.6.2 Spray Lay-Up Process 12.6.3 Vacuum Bag–Autoclave Process 12.6.4 Filament-Winding Process 12.7 Closed-Mold Processes for Fiber-Reinforced Plastic Composite Materials 12.7.1 Compression and Injection Molding 12.7.2 The Sheet-Molding Compound (SMC) Process 12.7.3 Continuous-Pultrusion Process 12.8 Concrete 12.8.1 Portland Cement 12.8.2 Mixing Water for Concrete 12.8.3 Aggregates for Concrete 12.8.4 Air Entrainment 12.8.5 Compressive Strength of Concrete 12.8.6 Proportioning of Concrete Mixtures 12.8.7 Reinforced and Prestressed Concrete 12.8.8 Prestressed Concrete 12.9 Asphalt and Asphalt Mixes 12.10 Wood 12.10.1 Macrostructure of Wood 12.10.2 Microstructure of Softwoods 12.10.3 Microstructure of Hardwoods 12.10.4 Cell-Wall Ultrastructure 12.10.5 Properties of Wood 12.11 Sandwich Structures 12.11.1 Honeycomb Sandwich Structure 12.11.2 Cladded Metal Structures 12.12 Metal-Matrix and Ceramic-Matrix Composites 12.12.1 Metal-Matrix Composites (MMCs) 12.12.2 Ceramic-Matrix Composites (CMCs) 12.12.3 Ceramic Composites and Nanotechnology 12.13 Summary 12.14 Definitions 12.15 Problems Chapter 13: Corrosion 13.1 Corrosion and Its Economical Impact 13.2 Electrochemical Corrosion of Metals 13.2.1 Oxidation-Reduction Reactions 13.2.2 Standard Electrode Half-Cell Potentials for Metals 13.3 Galvanic Cells 13.3.1 Macroscopic Galvanic Cells with Electrolytes That Are One Molar 13.3.2 Galvanic Cells with Electrolytes That Are Not One Molar 13.3.3 Galvanic Cells with Acid or Alkaline Electrolytes with No Metal Ions Present 13.3.4 Microscopic Galvanic Cell Corrosion of Single Electrodes 13.3.5 Concentration Galvanic Cells 13.3.6 Galvanic Cells Created by Differences in Composition, Structure, and Stress 13.4 Corrosion Rates (Kinetics) 13.4.1 Rate of Uniform Corrosion or Electroplating of a Metal in an Aqueous Solution 13.4.2 Corrosion Reactions and Polarization 13.4.3 Passivation 13.4.4 The Galvanic Series 13.5 Types of Corrosion 13.5.1 Uniform or General Attack Corrosion 13.5.2 Galvanic or Two-Metal Corrosion 13.5.3 Pitting Corrosion 13.5.4 Crevice Corrosion 13.5.5 Intergranular Corrosion 13.5.6 Stress Corrosion 13.5.7 Erosion Corrosion 13.5.8 Cavitation Damage 13.5.9 Fretting Corrosion 13.5.10 Selective Leaching 13.5.11 Hydrogen Damage 13.6 Oxidation of Metals 13.6.1 Protective Oxide Films 13.6.2 Mechanisms of Oxidation 13.6.3 Oxidation Rates (Kinetics) 13.7 Corrosion Control 13.7.1 Materials Selection 13.7.2 Coatings 13.7.3 Design 13.7.4 Alteration of Environment 13.7.5 Cathodic and Anodic Protection 13.8 Summary 13.9 Definitions 13.10 Problems Chapter 14: Electrical Properties of Materials 14.1 Electrical Conduction In Metals 14.1.1 The Classic Model for Electrical Conduction in Metals 14.1.2 Ohm’s Law 14.1.3 Drift Velocity of Electrons in a Conducting Metal 14.1.4 Electrical Resistivity of Metals 14.2 Energy-Band Model for Electrical Conduction 14.2.1 Energy-Band Model for Metals 14.2.2 Energy-Band Model for Insulators 14.3 Intrinsic Semiconductors 14.3.1 The Mechanism of Electrical Conduction in Intrinsic Semiconductors 14.3.2 Electrical Charge Transport in the Crystal Lattice of Pure Silicon 14.3.3 Energy-Band Diagram for Intrinsic Elemental Semiconductors 14.3.4 Quantitative Relationships for Electrical Conduction in Elemental Intrinsic Semiconductors 14.3.5 Effect of Temperature on Intrinsic Semiconductivity 14.4 Extrinsic Semiconductors 14.4.1 n-Type (Negative-Type) Extrinsic Semiconductors 14.4.2 p-Type (Positive-Type) Extrinsic Semiconductors 14.4.3 Doping of Extrinsic Silicon Semiconductor Material 14.4.4 Effect of Doping on Carrier Concentrations in Extrinsic Semiconductors 14.4.5 Effect of Total Ionized Impurity Concentration on the Mobility of Charge Carriers in Silicon at Room Temperature 14.4.6 Effect of Temperature on the Electrical Conductivity of Extrinsic Semiconductors 14.5 Semiconductor Devices 14.5.1 The pn Junction 14.5.2 Some Applications for pn Junction Diodes 14.5.3 The Bipolar Junction Transistor 14.6 Microelectronics 14.6.1 Microelectronic Planar Bipolar Transistors 14.6.2 Microelectronic Planar Field-Effect Transistors 14.6.3 Fabrication of Microelectronic Integrated Circuits 14.7 Compound Semiconductors 14.8 Electrical Properties of Ceramics 14.8.1 Basic Properties of Dielectrics 14.8.2 Ceramic Insulator Materials 14.8.3 Ceramic Materials for Capacitors 14.8.4 Ceramic Semiconductors 14.8.5 Ferroelectric Ceramics 14.9 Nanoelectronics 14.10 Summary 14.11 Definitions 14.12 Problems Chapter 15: Optical Properties and Superconductive Materials 15.1 Introduction 15.2 Light and the Electromagnetic Spectrum 15.3 Refraction of Light 15.3.1 Index of Refraction 15.3.2 Snell’s Law of Light Refraction 15.4 Absorption, Transmission, and Reflection of Light 15.4.1 Metals 15.4.2 Silicate Glasses 15.4.3 Plastics 15.4.4 Semiconductors 15.5 Luminescence 15.5.1 Photoluminescence 15.5.2 Cathodoluminescence 15.6 Stimulated Emission of Radiation and Lasers 15.6.1 Types of Lasers 15.7 Optical Fibers 15.7.1 Light Loss in Optical Fibers 15.7.2 Single-Mode and Multimode Optical Fibers 15.7.3 Fabrication of Optical Fibers 15.7.4 Modern Optical-Fiber Communication Systems 15.8 Superconducting Materials 15.8.1 The Superconducting State 15.8.2 Magnetic Properties of Superconductors 15.8.3 Current Flow and Magnetic Fields in Superconductors 15.8.4 High-Current, High-Field Superconductors 15.8.5 High Critical Temperature (Tc) Superconducting Oxides 15.9 Definitions 15.10 Problems Chapter 16: Magnetic Properties 16.1 Introduction 16.2 Magnetic Fields and Quantities 16.2.1 Magnetic Fields 16.2.2 Magnetic Induction 16.2.3 Magnetic Permeability 16.2.4 Magnetic Susceptibility 16.3 Types of Magnetism 16.3.1 Diamagnetism 16.3.2 Paramagnetism 16.3.3 Ferromagnetism 16.3.4 Magnetic Moment of a Single Unpaired Atomic Electron 16.3.5 Antiferromagnetism 16.3.6 Ferrimagnetism 16.4 Effect of Temperature on Ferromagnetism 16.5 Ferromagnetic Domains 16.6 Types of Energies that Determine the Structure of Ferromagnetic Domains 16.6.1 Exchange Energy 16.6.2 Magnetostatic Energy 16.6.3 Magnetocrystalline Anisotropy Energy 16.6.4 Domain Wall Energy 16.6.5 Magnetostrictive Energy 16.7 The Magnetization and Demagnetization of a Ferromagnetic Metal 16.8 Soft Magnetic Materials 16.8.1 Desirable Properties for Soft Magnetic Materials 16.8.2 Energy Losses for Soft Magnetic Materials 16.8.3 Iron–Silicon Alloys 16.8.4 Metallic Glasses 16.8.5 Nickel–Iron Alloys 16.9 Hard Magnetic Materials 16.9.1 Properties of Hard Magnetic Materials 16.9.2 Alnico Alloys 16.9.3 Rare Earth Alloys 16.9.4 Neodymium–Iron–Boron Magnetic Alloys 16.9.5 Iron–Chromium–Cobalt Magnetic Alloys 16.10 Ferrites 16.10.1 Magnetically Soft Ferrites 16.10.2 Magnetically Hard Ferrites 16.11 Summary 16.12 Definitions 16.13 Problems Chapter 17: Biological Materials and Biomaterials 17.1 Introduction 17.2 Biological Materials: Bone 17.2.1 Composition 17.2.2 Macrostructure 17.2.3 Mechanical Properties 17.2.4 Biomechanics of Bone Fracture 17.2.5 Viscoelasticity of Bone 17.2.6 Bone Remodeling 17.2.7 A Composite Model of Bone 17.3 Biological Materials: Tendons and Ligaments 17.3.1 Macrostructure and Composition 17.3.2 Microstructure 17.3.3 Mechanical Properties 17.3.4 Structure-Property Relationship 17.3.5 Constitutive Modeling and Viscoelasticity 17.3.6 Ligament and Tendon Injury 17.4 Biological Material: Articular Cartilage 17.4.1 Composition and Macrostructure 17.4.2 Microstructure 17.4.3 Mechanical Properties 17.4.4 Cartilage Degeneration 17.5 Biomaterials: Metals in Biomedical Applications 17.5.1 Stainless Steels 17.5.2 Cobalt-Based Alloys 17.5.3 Titanium Alloys 17.5.4 Some Issues in Orthopedic Application of Metals 17.6 Polymers in Biomedical Applications 17.6.1 Cardiovascular Applications of Polymers 17.6.2 Ophthalmic Applications 17.6.3 Drug Delivery Systems 17.6.4 Suture Materials 17.6.5 Orthopedic Applications 17.7 Ceramics in Biomedical Applications 17.7.1 Alumina in Orthopedic Implants 17.7.2 Alumina in Dental Implants 17.7.3 Ceramic Implants and Tissue Connectivity 17.7.4 Nanocrystalline Ceramics 17.8 Composites in Biomedical Applications 17.8.1 Orthopedic Applications 17.8.2 Applications in Dentistry 17.9 Corrosion in Biomaterials 17.10 Wear in Biomedical Implants 17.11 Tissue Engineering 17.12 Summary 17.13 Definitions 17.14 Problems Appendix I: Important Properties of Selected Engineering Materials Appendix II: Some Properties of Selected Elements Appendix III: Ionic Radii of the Elements Appendix IV: Glass Transition Temperature and Melting Temperature of Selected Polymers Appendix V: Selected Physical Quantities and Their Units References for Further Study by Chapter Glossary Answers Index

ادامه ...
برای ارسال نظر لطفا وارد شوید یا ثبت نام کنید
ادامه ...
پشتیبانی محصول

۱- در صورت داشتن هرگونه مشکلی در پرداخت، لطفا با پشتیبانی تلگرام در ارتباط باشید.

۲- برای خرید محصولات لطفا به شماره محصول و عنوان دقت کنید.

۳- شما می توانید فایلها را روی نرم افزارهای مختلف اجرا کنید(هیچگونه کد یا قفلی روی فایلها وجود ندارد).

۴- بعد از خرید، محصول مورد نظر از صفحه محصول قابل دانلود خواهد بود همچنین به ایمیل شما ارسال می شود.

۵- در صورت وجود هر مشکلی در فرایند خرید با تماس بگیرید.