Elastomer Blends and Composites: Principles, Characterization, Advances, and Applications - Original PDF

دانلود کتاب Elastomer Blends and Composites: Principles, Characterization, Advances, and Applications - Original PDF

Author: Rangappa S.M., Parameswaranpillai J., Siengchin S., Ozbakkaloglu T. (ed.)

0 (0)

توضیحات کتاب :

Elastomer Blends and Composites: Principles, Characterization, Advances, and Applications presents the latest developments in natural rubber and synthetic rubber-based blends and nanocomposites, with a focus on current trends, future directions and state-of-the-art applications. The book introduces the fundamentals of natural rubber and synthetic rubbers, outlining synthesis, structure, properties, challenges and potential applications. This is followed by detailed coverage of compounding and formulations, manufacturing methods, and preparation of elastomer-based blends, composites, and nanocomposites. The next section of the book focuses on properties and characterization, examining elasticity, spectroscopy, barrier properties, and rheological, morphological, mechanical, thermal, and viscoelastic behavior, and more. This is a highly valuable resource for researchers and advanced students in rubber (or elastomer) science, polymer blends, composites, polymer science, and materials science and engineering, as well as engineers, technologists, and scientists working with rubber-based materials for advanced applications.

سرچ در وردکت | سرچ در گودریدز | سرچ در اب بوکز | سرچ در آمازون | سرچ در گوگل بوک

828 بازدید 1 خرید

ضمانت بازگشت

ضمانت بازگشت

فایل های تست شده

فایل های تست شده

پرداخت آنلاین

پرداخت آنلاین

تضمین کیفیت

تضمین کیفیت

دانلود فوری

دانلود فوری

Elastomers are viscoelastic polymers, showing both viscous and elastic properties. The elastomer possesses long polymer chains held together with weak intermolecular forces. These weak forces make them flexible and sticky, with high elongation upon the application of stress. Once the stress is released, it could come back to the original shape and hence called elastomer. Most of these polymers are having 100% recoverability, thanks to their low degree of cross-links. The low degree of cross-links in the elastomer makes it amorphous; however, once it is stretched, crystalline sites can be observed. The elastomer retains its original shape because of these cross-links. In order words, crosslinking within the elastomer provides a better shape and stiffness. The other features of elastomers are low glass transition temperature, hydrophobicity, good adhesion, good breaking resistance, tear strength, abrasion resistance, resistant to gas, water, and steam, and are excellent insulators. It finds application in adhesives, sealing applications, and insulations [1]. Elastomers are of natural and synthetic origin. The synthetic elastomers are petroleum-based, while natural rubbers are of plant origin. Examples for elastomers are natural rubber, EPDM rubber, silicone rubber, olefin thermoplastic elastomer, etc. The properties of a pure elastomer such as elasticity, strength, hardness, and resilience are poor, which restricts its use in advanced applications. Therefore, cross-linking is necessary. The properties and performance of the elastomer can be dramatically enhanced with vulcanization/cross-linking [2].

چکیده فارسی

 

الاستومرها پلیمرهای ویسکوالاستیک هستند که هم خاصیت چسبناک و هم خاصیت الاستیک را نشان می‌دهند. الاستومر دارای زنجیره های پلیمری طولانی است که با نیروهای بین مولکولی ضعیف در کنار هم قرار گرفته اند. این نیروهای ضعیف باعث انعطاف پذیری و چسبندگی آنها می شود و در اثر اعمال تنش ازدیاد طول می کشد. هنگامی که تنش آزاد می شود، می تواند به شکل اولیه بازگردد و از این رو الاستومر نامیده می شود. اکثر این پلیمرها به دلیل سطح پایین پیوندهای متقابل، قابلیت بازیابی 100% دارند. درجه پایین اتصالات عرضی در الاستومر آن را بی شکل می کند. با این حال، هنگامی که آن را کشیده، سایت های کریستالی را می توان مشاهده کرد. الاستومر شکل اولیه خود را به دلیل این پیوندهای عرضی حفظ می کند. به عبارت دیگر، پیوند متقاطع در الاستومر شکل و سفتی بهتری را فراهم می کند. از دیگر ویژگی های الاستومرها دمای انتقال شیشه ای پایین، آب گریزی، چسبندگی خوب، مقاومت در برابر شکستن خوب، استحکام پارگی، مقاومت در برابر سایش، مقاوم در برابر گاز، آب و بخار است و عایق های عالی هستند. در چسب ها، کاربردهای آب بندی و عایق ها کاربرد دارد [1]. الاستومرها منشا طبیعی و مصنوعی دارند. الاستومرهای مصنوعی مبتنی بر نفت هستند، در حالی که لاستیک‌های طبیعی منشا گیاهی دارند. نمونه هایی از الاستومرها عبارتند از لاستیک طبیعی، لاستیک EPDM، لاستیک سیلیکون، الفین ترموپلاستیک الاستومر و غیره. خواص یک الاستومر خالص مانند خاصیت ارتجاعی، استحکام، سختی و انعطاف پذیری ضعیف است که استفاده از آن را در کاربردهای پیشرفته محدود می کند. بنابراین، پیوند متقابل ضروری است. خواص و عملکرد الاستومر را می توان با ولکانیزاسیون/ پیوند متقابل [2] به طور چشمگیری افزایش داد.

 

ادامه ...

References [1] R.J. Young, P.A. Lovell, Introduction to Polymers, third ed., CRC Press, Boca Raton, FL, 2011. [2] I.W. Hamley, The Physics of Block Copolymers, Oxford University Press, New York, 1998. [3] R.J. Spontak, N.P. Patel, Thermoplastic elastomers: fundamentals and applications, Curr. Opin. Colloid Interface Sci. 5 (2000) 333e340. [4] G. Holden, H.R. Kricheldorf, R.P. Quirk, Thermoplastic Elastomers, third ed., Hanser, Munich, 2004. [5] A. Hotta, E. Cochran, J. Ruokolainen, V. Khanna, G. Fredrickson, E. Kramer, Y.-W. Shin, F. Shimizu, A. Cherian, P. Hustad, J. Rose, G. Coates, Semicrystalline thermoplastic elastomeric polyolefins: 392 Elastomer Blends and Composites advances through catalyst development and macromolecular design, Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 15327e15332. [6] Forum on block copolymers for nanotechnology applications, in: P. Mu¨ller-Buschbaum (Ed.), ACS Appl. Mater. Interfaces 9 (2017) 31213e32412. [7] C.M. Bates, F.S. Bates, 50th anniversary perspective: block polymersdpure potential, Macromolecules 50 (2017) 3e22. [8] S.I. Rosenbloom, D.T. Gentekos, M.N. Silberstein, B.P. Fors, Tailor-made thermoplastic elastomers: customisable materials via modulation of molecular weight distributions, Chem. Sci. 11 (2020) 1361e1367. [9] J. Markarian, Processing and recycling advantages drive growth in thermoplastic elastomers, Plast. Adhes. Compound. 6 (2004) 22e25. [10] C.-C. Kim, H.-H. Lee, K.H. Oh, J.-Y. Sun, Highly stretchable, transparent ionic touch panel, Science 353 (2016) 682e687. [11] C. Creton, G.J. Hu, F. Deplace, L. Morgret, K.R. Shull, Large-strain mechanical behavior of model block copolymer adhesives, Macromolecules 42 (2009) 7605e7615. [12] J.E. Puskas, Y. Chen, Biomedical application of commercial polymers and novel polyisobutylenebased thermoplastic elastomers for soft tissue replacement, Biomacromolecules 5 (2004) 1141e1154. [13] M. El Fray, P. Prowans, J.E. Puskas, V. Alstadt, Biocompatibility and fatigue properties of polystyrene-polyisobutylene-polystyrene, an emerging thermoplastic elastomeric biomaterial, Biomacromolecules 7 (2006) 844e850. [14] Cathy DZBH, Global thermoplastic elastomers (TPEs) market 2020 with top countries data, BEC Materials (2020). www.becmaterials.com/news/601Global_ Thermoplastic_Elastomers_Market_ 2020_With_Top_Countries_Data. [15] Thermoplastic elastomer market to reach USD 27.8 billion by 2024, Forencis Research, September 27, 2019. www.forencisresearch.com/press-release/thermoplastic-elastomer-market/. [16] W.L. Semon, G.A. Stahl, History of vinyl chloride polymers, J. Macromol. Sci. A: Chem. 15 (1981) 1263e1278. [17] L. Leibler, Theory of microphase separation in block copolymers, Macromolecules 13 (1980) 1602e1617. [18] M.W. Hamersky, S.D. Smith, A.O. Gozen, R.J. Spontak, Phase behavior of triblock copolymers varying in molecular asymmetry, Phys. Rev. Lett. 95 (2005) 168306. [19] M.W. Matsen, Effect of architecture on the phase behavior of AB-type block copolymer melts, Macromolecules 45 (2012) 2161e2165. [20] W. Jiang, Y. Qiang, W. Li, F. Qiu, A.-C. Shi, Effects of chain topology on the self-assembly of AB-type block copolymers, Macromolecules 51 (2018) 1529e1538. [21] J.O. Akindoyo, M.D.H. Beg, S. Ghazali, M.R. Islam, N. Jeyaratnam, A.R. Yuvaraj, Polyurethane types, synthesis and applications e a review, RSC Adv. 6 (2016) 114453e114482. [22] J. Datta, P. Kasprzyk, Thermoplastic polyurethanes derived from petrochemical or renewable resources: a comprehensive review, Polym. Eng. Sci. 58 (2018) E14eE35. [23] L. Bartolome´, J. Aurrekoetxea, M.A. Urchegui, W. Tato, The influences of deformation state and experimental conditions on inelastic behaviour of an extruded thermoplastic polyurethane elastomer, Mater. Des. 49 (2013) 974e980. [24] M. Charlon, B. Heinrich, Y. Matter, E. Couzigne´, B. Donnio, L. Ave´rous, Synthesis, structure and properties of fully biobased thermoplastic polyurethanes, obtained from a diisocyanate based on modified dimer fatty acids, and different renewable diols, Eur. Polym. J. 61 (2014) 197e205. Chapter 17  Advances in thermoplastic elastomers 393 [25] K.L. Kull, R.W. Bass, G. Craft, T. Julien, E. Marangon, C. Marrouat, J.P. Harmon, Synthesis and characterization of an ultra-soft poly(carbonate urethane), Eur. Polym. J. 71 (2015) 510e522. [26] R.J. Cella, Morphology of segmented polyester thermoplastic elastomers, J. Polym. Sci., Polym. Symp. 42 (1973) 727e740. [27] S.M. Grayson, J.M.J. Fre´chet, Synthesis and surface functionalization of aliphatic polyether dendrons, J. Am. Chem. Soc. 122 (2000) 10335e10344. [28] T. Nishi, T.K. Kwei, Improvement of the impact strength of a blend of poly(vinyl chloride) with copolyester thermoplastic elastomer by heat treatment, J. Appl. Polym. Sci. 20 (1976) 1331e1337. [29] L. Vogt, F. Ruther, S. Salehi, A.R. Boccaccini, Poly(glycerol sebacate) in biomedical applicationsda review of the recent literature, Adv. Health. Mater. (2021) 2002026. [30] I.A. Carrascal, A. Pe´rez, J.A. Casado, S. Diego, J.A. Polanco, D. Ferren˜o, J.J. Martı´n, Experimental study of metal cushion pads for high speed railways, Construct. Build. Mater. 182 (2018) 273e283. [31] S. Seyedin, P. Zhang, M. Naebe, S. Qin, J. Chen, X. Wang, M. Razal, Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications, Mater. Horiz. 6 (2019) 219e249. [32] N.J. Sijbrandi, A.J. Kimenai, E.P.C. Mes, R. Broos, G. Bar, M. Rosenthal, Y. Odarchenko, D.A. Ivanov, P.J. Dijkstra, J. Feijen, Synthesis, morphology, and properties of segmented poly(ether amide)s with uniform oxalamide-based hard segments, Macromolecules 45 (2012) 3948e3961. [33] S. Armstrong, B. Freeman, A. Hiltner, E. Baer, Gas permeability of melt-processed poly(etherblock-amide) copolymers and the effects of orientation, Polymer 53 (2012) 1383e1392. [34] K.A. Murray, J.E. Kennedy, B. McEvoy, O. Vrain, D. Ryan, R. Cowman, C.L. Higginbotham, Effects of gamma ray and electron beam irradiation on the mechanical, thermal, structural and physicochemical properties of poly(ether-block-amide) thermoplastic elastomers, J. Mech. Behav. Biomed. Mater. 17 (2013) 252e268. [35] A.K. Bhowmick, J.R. White, Thermal, UV- and sunlight aging of thermoplastic elastomeric natural rubber-polyethylene blends, J. Mater. Sci. 37 (2002) 5141e5151. [36] J. Feldthusen, B. Ivan, A.H.E. Mu¨ller, Synthesis of linear and star-shaped block copolymers of isobutylene and methacrylates by combination of living cationic and anionic polymerizations, Macromolecules 31 (1998) 578e585. [37] S.L. Aggarwal, Structure and properties of block polymers and multiphase polymer systems: an overview of present status and future potential, Polymer 17 (1976) 938e956. [38] TPE market approaches maturity, Plast. Rubber Wkly. (October 18, 2016). [39] A.N. Wilkinson, M.L. Clemens, V.M. Harding, The effects of SEBS-g-maleic anhydride reaction on the morphology and properties of polypropylene/PA6/SEBS ternary blends, Polymer 45 (2004) 5239e5249. [40] J.K. Oh, Polylactide (PLA)-Based amphiphilic block copolymers : synthesis, self-assembly, and biomedical applications, Soft Matter 7 (2011) 5096e5108. [41] H. Fischer, S. Poser, Liquid crystalline block and graft copolymers, Acta Polym. 47 (1996) 413e428. [42] P. Figueiredo, S. Geppert, R. Brandsch, G. Bar, R. Thomann, R.J. Spontak, W. Gronski, R. Samlenski, P. Mu¨ller-Buschbaum, Ordering of cylindrical microdomains in thin films of hybrid isotropic/ liquid crystalline triblock copolymers, Macromolecules 34 (2001) 171e180. [43] C.S. Marvel, G.E. Inskeep, R. Deanin, A. Juve, C. Schroeder, M. Goff, Copolymers of butadiene with halogenated styrenes, Ind. Eng. Chem. 39 (1947) 1486e1490. [44] X. Wang, M. Goswami, R. Kumar, B.G. Sumpter, J. Mays, Morphologies of block copolymers composed of charged and neutral blocks, Soft Matter 8 (2012) 3036. 394 Elastomer Blends and Composites [45] K.P. Mineart, B. Lee, R.J. Spontak, A solvent-vapor approach toward the control of block ionomer morphologies, Macromolecules 49 (2016) 3126e3137. [46] D. Park, C.J. Weinman, J.A. Finlay, B.R. Fletcher, M.Y. Paik, H.S. Sundaram, M.D. Dimitriou, K.E. Sohn, M.E. Callow, J.A. Callow, D.L. Handlin, C.L. Willis, D.A. Fischer, E.J. Kramer, C.K. Ober, Amphiphilic surface active triblock copolymers with mixed hydrophobic and hydrophilic side chains for tuned marine fouling-release properties, Langmuir 26 (2010) 9772e9781. [47] M.L. Adams, A. Lavasanifar, G.S. Kwon, Amphiphilic block copolymers for drug delivery, J. Pharmacol. Sci. 92 (2003) 1343e1355. [48] H.A. Al-Mohsin, K.P. Mineart, D.P. Armstrong, R.J. Spontak, Tuning the performance of aqueous photovoltaic elastomer gels by solvent polarity and nanostructure development, J. Polym. Sci. B Polym. Phys. 55 (2017) 85e95. [49] Z. Dai, J. Deng, H. Aboukeila, J. Yan, L. Ansaloni, K.P. Mineart, M. Giacinti Baschetti, R.J. Spontak, L. Deng, Highly CO2-permeable membranes derived from a midblock-sulfonated multiblock polymer after submersion in water, NPG Asia Mater. 11 (2019) 1e7. [50] B.S.T. Peddinti, S.N. Downs, J. Yan, S.D. Smith, R.A. Ghiladi, V. Mhetar, R. Tocchetto, A. Griffiths, F. Scholle, R.J. Spontak, Rapid and repetitive inactivation of SARS-CoV-2 and human coronavirus on self-disinfecting anionic polymers, Adv. Sci. 8 (2021) 2003503. [51] I.W. Hamley (Ed.), Developments in Block Copolymer Science and Technology, Wiley, Chichester, 2004. [52] T. Smart, H. Lomas, M. Massignani, M.V. Flores-Merino, L.R. Perez, G. Battaglia, Block copolymer nanostructures, Nano Today 3 (2008) 38e46. [53] F. Bates, G. Fredrickson, Block copolymer thermodynamics: theory and experiment, Annu. Rev. Phys. Chem. 41 (1990) 525e557. [54] M.W. Matsen, M. Schick, Self-assembly of block copolymers, Curr. Opin. Colloid Interface Sci. 1 (1996) 329e336. [55] S.D. Smith, R.J. Spontak, M.M. Satkowski, A. Ashraf, A.K. Heape, J.S. Lin, Microphase-separated poly(styrene-b-isoprene)n multiblock copolymers with constant block lengths, Polymer 35 (1994) 4527e4536. [56] R.J. Spontak, S.D. Smith, Perfectly-alternating linear (AB)n multiblock copolymers: effect of molecular design on morphology and properties, J. Polym. Sci. B Polym. Phys. 39 (2001) 947e955. [57] M. Steube, T. Johann, E. Galanos, M. Appold, C. Ruttiger, M. Mezger, M. Gallei, A.H.E. Mu¨ller, G. Floudas, H. Frey, Isoprene/styrene tapered multiblock copolymers with up to ten blocks: synthesis, phase behavior, order, and mechanical properties, Macromolecules 51 (2018) 10246e10258. [58] C. Wahlen, J. Blankenburg, P. von Tiedemann, J. Ewald, P. Sajkiewicz, A.H.E. Mu¨ller, G. Floudas, H. Frey, Tapered multiblock copolymers based on farnesene and styrene: impact of biobased polydiene architectures on material properties, Macromolecules 53 (2020) 10397e10408. [59] G.M. Grason, R.D. Kamien, Interfaces in diblocks: a study of miktoarm star copolymers, Macromolecules 37 (2004) 7371e7380. [60] N.A. Lynd, F.T. Oyerokun, D.L. O’Donoghue, D.L. Handlin, G.H. Fredrickson, Design of soft and strong thermoplastic elastomers based on nonlinear block copolymer architectures using selfconsistent-field theory, Macromolecules 43 (2010) 3479e3486. [61] J.E. Poelma, K. Ono, D. Miyajima, T. Aida, K. Satoh, C.J. Hawker, Cyclic block copolymers for controlling feature sizes in block copolymer lithography, ACS Nano 6 (2012) 10845e10854. [62] G.M. Grason, R.D. Kamien, Self-consistent field theory of multiply branched block copolymer melts, Phys. Rev. E 71 (2005) 051801. [63] S.J. Diamanti, V. Khanna, A. Hotta, R.C. Coffin, D. Yamakawa, E.J. Kramer, G.H. Fredrickson, G.C. Bazan, Tapered block copolymers containing ethylene and a functionalized comonomer, Macromolecules 39 (2006) 3270e3274

ادامه ...

Cover Half Title Elastomer Blends and Composites: Principles, Characterization, Advances, and Applications Copyright Contents Contributors Preface 1. Introduction to elastomers 1.1 Introduction 1.2 Vulcanization/cross-linking in elastomers 1.3 Elastomeric composites and blends 1.4 Recent developments in elastomeric blends and composites 1.4.1 NR-based elastomers 1.4.2 EPDM-based elastomers 1.4.3 Silicone rubber 1.4.4 Olefin thermoplastic elastomer 1.4.5 Biodegradable elastomers 1.5 Conclusion Acknowledgments References 2. Manufacturing methods of elastomer blends and composites 2.1 Introduction 2.2 Preparation techniques 2.2.1 Solvent casting 2.2.2 Freeze drying 2.2.3 Spray drying 2.2.4 Latex stage compounding 2.2.5 Heterocoagulation approach 2.2.6 In situ polymerization 2.2.7 Melt blending/extrusion 2.2.8 Solid-state shear pulverization 2.2.9 Liquid crystal elastomer 2.2.10 Soft and biostable elastomer 2.2.11 Short fiber reinforced elastomer composite 2.2.12 Surface-modified flax elastomer composites 2.2.13 Modeling for randomly oriented multimaterial 2.2.14 Silicone composites 2.3 Conclusion References 3. Elastomer-based blends 3.1 Introduction 3.2 Compatibilization of elastomer-based blends 3.3 Impact of nanofillers on elastomer-based blends 3.4 Fabrication methods of elastomers 3.5 Processing and characterization methods of elastomers-based blends 3.6 Properties of elastomers-based blends 3.7 Applications of elastomer-based blends 3.7.1 Self-healable elastomer blends 3.7.2 Food packaging application of elastomer-based blends 3.7.3 Mechanical performance of elastomer-based blends 3.8 Conclusion References 4. Elastomer-based filler composites 4.1 Introduction 4.2 Preparation and properties of fillers 4.2.1 Carbon black 4.2.2 Silica 4.2.3 Different fillers 4.2.3.1 Magnetic fillers 4.2.3.2 Copper nanowire 4.2.3.3 Hybrid fillers (TiO2-Graphene) 4.2.3.4 Piezoelectric (PZT) and silver-coated glass microsphere fillers 4.2.3.5 SBS (styrene–butadiene–styrene/multiwall) carbon nanotubes fillers 4.2.3.6 Carbon nanotubes and hybrid fillers 4.2.3.7 Graphene nanoplatelets (GnPs), expanded graphite (EG), and multiwalled carbon nanotubes (MWCNTs) 4.2.3.8 3D graphene foam filler 4.2.3.9 Boron nitride filled in polyolefin elastomer 4.2.3.10 Expanded graphite filled with styrene isoprene styrene block copolymer 4.2.3.11 Gamma-ferrite additive to carbonyl iron (CI) natural rubber (NR) composite 4.2.4 Glycerol filler 4.3 Conclusions and perspectives References 5. Engineering applications of elastomer blends and composites 5.1 Introduction 5.2 Elastomer blends and composites processing methods 5.2.1 Extrusion (twin or single screw) 5.2.2 Brabender 5.2.3 Two roll mills 5.2.4 Radiation method 5.3 Elastomer blends and composites engineering applications 5.3.1 Biomedical engineering applications 5.3.2 Ocean engineering applications 5.3.3 Agriculture engineering applications 5.4 Conclusion Acknowledgments References 6. Rheology of elastomer blends and composites 6.1 Introduction 6.2 Basic aspects of rheology 6.3 Basic key terms 6.4 Rheological models 6.5 Newtonian fluids (viscous liquids) 6.6 Non-Newtonian fluids 6.7 Conditions affecting the rheological properties of materials 6.8 Effect of temperature 6.9 Effect of the system structure at the micro-/nano-scale 6.10 Applied rheology in elastomers, blends, and composites thereof 6.11 Static versus dynamic rheological tests 6.12 Laboratory tests and instrumentations 6.13 Cone-and-plate rheometer 6.14 Capillary viscometer 6.15 Mooney viscometer 6.16 Constitutive rheological models 6.17 Uncured rubber melts 6.18 Elastomer blends 6.19 Elastomer composites 6.20 Conclusions References 7. Morphological characteristics of elastomer blends and composites 7.1 Introduction 7.2 Morphology 7.2.1 Optical microscopy(OM) 7.2.2 Scanning electron microscopy(SEM) 7.2.3 Atomic force microscopy(AFM) 7.2.4 Transmission electron microscopy(TEM) 7.2.5 Field emission scanning electron microscope(FESEM) 7.3 Effect of plant fiber-reinforced elastomer composites 7.4 Effect of synthetic fiber-reinforced elastomer composites 7.5 Conclusions References 8. Mechanical behavior of elastomer blends and composites 8.1 Introduction 8.2 Mechanical behavior of elastomer blends 8.3 SMP of elastomer blends 8.4 DMP of elastomer blends 8.5 Mechanical behavior of elastomer composites 8.6 SMP of elastomer composites 8.7 DMP of elastomer composites 8.8 Conclusions References 9. Thermal behavior of elastomer blends and composites 9.1 Introduction 9.2 Thermodynamics of the rubber–rubber and rubber–polymer blends 9.3 Thermal behavior of blends 9.3.1 Thermal behavior analysis of elastomeric blends by DSC technique 9.3.2 Thermal behavior analysis of elastomeric blends by DMA technique 9.3.3 Thermal behavior analysis of elastomeric blends by TGA 9.4 Thermal behavior of elastomeric composites 9.4.1 Thermal behavior of elastomeric composites analyzed by DSC technique 9.4.2 Thermal behavior of elastomeric composites analyzed by DMA technique 9.4.3 Thermal behavior of elastomeric composites based on TGA technique 9.5 Conclusion References 10. Viscoelastic behavior of elastomer blends and composites 10.1 Introduction 10.1.1 Viscoelasticity: a property of materials 10.1.2 Constitutive models of linear viscoelasticity 10.1.3 Dynamic loading and responses 10.2 Viscoelasticity of elastomer blends 10.3 Viscoelasticity of elastomer composites 10.4 Conclusion References 11. Spectroscopy of elastomer blends and composites 11.1 Introduction 11.2 FT-IR and Raman spectroscopy 11.3 Fluorescence spectroscopy 11.4 NMR spectroscopy 11.5 Conclusion Acknowledgments References 12. Wide-angle X-ray diffraction and small-angle X-ray scattering studies of elastomer blends and composites 12.1 Focus 12.2 X-ray diffraction 12.2.1 The beginnings of WAXD 12.2.2 Properties of X-rays 12.2.3 Choosing the wavelength 12.2.4 Filters versus monochromators 12.3 Methods in X-ray scattering 12.3.1 X-ray scattering and polymers 12.4 Wide-angle X-ray diffraction, WAXD 12.4.1 WAXD configurations 12.4.2 X-ray patterns and preferred orientation 12.4.3 Amorphous state and random microcrystallinity 12.4.4 Detection systems 12.4.5 Remarks 12.5 Small-angle X-ray scattering (SAXS) 12.5.1 The beginnings of SAXS 12.5.2 SAXS and polymers 12.5.3 Diffuse small-angle scattering 12.5.3.1 Guinier law 12.5.3.2 Fractal structure 12.5.3.3 Scattering equivalents 12.5.4 Discrete small-angle scattering 12.5.4.1 Two-phase model and Lorentz correction 12.5.4.2 Invariant and radial correlation function 12.5.5 Instrumentation for small-angle X-ray scattering 12.6 Applications 12.7 Synchrotron scattering 12.8 Conclusions References Further reading 13. Theoretical modeling and simulation of elastomer blends and nanocomposites 13.1 Introduction 13.2 Simulations of elastomers 13.2.1 Thermoplastic elastomers 13.2.2 Thermosetting elastomers 13.3 Modeling study of elastomer blends and composites 13.3.1 Thermal modeling 13.3.2 Mechanical modeling 13.3.3 Rheological modeling 13.4 Major concern/challenges 13.5 Conclusion and future scope References 14. Recycling of elastomer blends and composites 14.1 Introduction 14.2 Devulcanization methods 14.2.1 Chemical method 14.2.2 Ultrasound method 14.2.3 Microwave methods 14.2.4 Thermomechanical methods 14.2.5 Biological methods 14.2.6 Supercritical methods 14.3 Value-added products from revulcanized elastomeric blends and composites 14.4 Conclusion 14.5 Future perspectives References Further reading 15. Applications of elastomer blends and composites 15.1 Introduction 15.2 Polyurethane-based elastomer blends and composites 15.2.1 Polyurethane-based flame-retardant elastomer 15.2.2 Polyurethane-based self-healing elastomer 15.2.3 Polyurethane-based shape memory elastomer 15.2.4 Polyurethane-based sensing elastomer 15.3 Silicone-based elastomer blends and composites 15.4 Ethylene-propylene-diene monomer (EPDM)-based elastomer 15.5 Other elastomers 15.5.1 Fluorocarbon elastomer 15.5.2 Chlorosulfonated polyethylene rubber elastomer 15.6 Conclusions References 16. Properties of elastomer–biological phenolic resin composites 16.1 Introduction 16.2 Biological phenolic resin 16.2.1 Phenolic compounds from biomass-based 16.2.2 Thermoplastic versus thermoset biological phenolic resin 16.2.3 Elastomeric properties of thermoset and thermoplastic BPR 16.3 Properties of blended composite 16.3.1 Rheological characteristics 16.3.2 Physical attributes 16.3.3 Mechanical performances 16.3.4 Thermal properties 16.4 Conclusion 16.5 Future trend Acknowledgments References 17. Advances in stimuli-responsive and functional thermoplastic elastomers 17.1 Overview of thermoplastic elastomers and their applications 17.2 Introduction to model block copolymers as TPEs 17.3 Physical modification of nonpolar TPEs and their applications 17.3.1 Fabrication and properties of TPEGs 17.3.2 Stimuli-responsive and electrically conductive TPEGs 17.4 Chemical modification of nonpolar TPEs and their applications 17.5 Morphological development and applications of charged TPEs 17.6 Concluding remarks Acknowledgments References Index A B C D E F G H I K L M N O P R S T U V W X Cover back

ادامه ...
برای ارسال نظر لطفا وارد شوید یا ثبت نام کنید
ادامه ...
پشتیبانی محصول

۱- در صورت داشتن هرگونه مشکلی در پرداخت، لطفا با پشتیبانی تلگرام در ارتباط باشید.

۲- برای خرید محصولات لطفا به شماره محصول و عنوان دقت کنید.

۳- شما می توانید فایلها را روی نرم افزارهای مختلف اجرا کنید(هیچگونه کد یا قفلی روی فایلها وجود ندارد).

۴- بعد از خرید، محصول مورد نظر از صفحه محصول قابل دانلود خواهد بود همچنین به ایمیل شما ارسال می شود.

۵- در صورت وجود هر مشکلی در فرایند خرید با تماس بگیرید.