Detecting regime change in computational finance: data science, machine learning and algorithmic trading - Original PDF

دانلود کتاب Detecting regime change in computational finance: data science, machine learning and algorithmic trading - Original PDF

Author: Chen, Jun; Tsang, Edward

0 (0)

توضیحات کتاب :

"Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and, Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarizing price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ("zigzag"). By sampling data in a different way, the book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics: Data science: as an alternative to time series, price movements in a market can be summarised as directional changes Machine learning for regime change detection: historical regime changes in a market can be discovered by a Hidden Markov Model Regime characterisation: normal and abnormal regimes in historical data can be characterised using indicators defined under Directional Change Market Monitoring: by using historical characteristics of normal and abnormal regimes, one can monitor the market to detect whether the market regime has changed Algorithmic trading: regime tracking information can help us to design trading algorithms It will be of great interest to researchers in computational finance, machine learning, and data science"--;Background and literature survey -- Regime change detection using directional change indicators -- Classification of normal and abnormal regimes in financial markets -- Tracking regime changes using directional change indicators -- Algorithmic trading based on regime change tracking.

سرچ در وردکت | سرچ در گودریدز | سرچ در اب بوکز | سرچ در آمازون | سرچ در گوگل بوک

862 بازدید 0 خرید

ضمانت بازگشت

ضمانت بازگشت

فایل های تست شده

فایل های تست شده

پرداخت آنلاین

پرداخت آنلاین

تضمین کیفیت

تضمین کیفیت

دانلود فوری

دانلود فوری

This book is about data analysis in finance. What useful informa tion could one extract from data? To allow us to go into great depth in this book, we focus on information about regime changes, which means changes in the collective behaviour of the traders in the market. Being able to recognize regime changes in the market is impor tant for traders and regulators. This book starts by asking “what are the data telling us about the market”. Then it explains how the infor mation extracted from the data could help us monitor the market, to see whether it has entered a different regime. Then, as a proof of con cept, it explains how a trader could benefit from such information. We shall explain that both knowledge representation and machine learning (two important branches of Artificial Intelligence (AI)) play important roles in information extraction

چکیده فارسی

 

این کتاب در مورد تجزیه و تحلیل داده ها در امور مالی است. چه اطلاعات مفیدی را می توان از داده ها استخراج کرد؟ برای اینکه به ما اجازه دهیم در این کتاب به عمق بیشتری برویم، ما بر اطلاعات مربوط به تغییرات رژیم تمرکز می کنیم، که به معنای تغییر در رفتار جمعی معامله گران در بازار است. توانایی تشخیص تغییرات رژیم در بازار برای معامله گران و تنظیم کننده ها مهم است. این کتاب با این سؤال شروع می‌شود که «داده‌ها در مورد بازار به ما چه می‌گویند». سپس توضیح می دهد که چگونه اطلاعات استخراج شده از داده ها می تواند به ما در نظارت بر بازار کمک کند تا ببینیم آیا وارد یک رژیم متفاوت شده است یا خیر. سپس، به عنوان اثبات مفهوم، توضیح می دهد که چگونه یک معامله گر می تواند از چنین اطلاعاتی بهره مند شود. توضیح خواهیم داد که هم بازنمایی دانش و هم یادگیری ماشین (دو شاخه مهم هوش مصنوعی (AI)) نقش مهمی در استخراج اطلاعات دارند

 

ادامه ...

Author(s): Chen, Jun; Tsang, Edward

Publisher: CRC Press, Year: 2021

ISBN: 9781003087595,9781000220162,1000220168,9781000220261,1000220265,9781000220360,1000220362,1003087590

ادامه ...

v Contents Foreword Preface List of Figures List of Tables Chapter 1 · Introduction xi xix xxi xxv 1 1.1 1.2 1.3 Chapter OVERVIEW RESEARCH OBJECTIVES BOOK STRUCTURE 2 · Background and Literature Survey 1 2 4 5 2.1 2.2 2.3 REGIME CHANGE 2.1.1 Regime Change Detection Methods DIRECTIONAL CHANGE 2.2.1 The Concept of Directional Change 2.2.2 Research Using Directional Change 2.2.3 Directional Change Indicators 2.2.3.1 Total Price Movement 2.2.3.2 Time for Completion of a Trend 2.2.3.3 Time–Adjusted Return of DC MACHINE LEARNING TECHNIQUES 2.3.1 Hidden Markov Model 5 6 7 9 11 12 12 12 13 13 13 vi · Contents Chapter 2.3.1.1 Definition of HMM 2.3.1.2 Parameters of HMM 2.3.1.3 Expectation-Maximization Algorithm 2.3.2 Na ̈ıve Bayes Classifier 2.3.2.1 Definition of Na ̈ıve Bayes Classifier 3 · Regime Change Detection Using Directional Change Indicators 15 15 16 17 18 21 3.1 3.2 3.3 3.4 3.5 Chapter INTRODUCTION METHODOLOGY 3.2.1 DC Indicator 3.2.2 Time Series Indicator EXPERIMENTS 3.3.1 Data Sets 3.3.2 Hidden Markov Model EMPIRICAL RESULTS 3.4.1 EUR–GBP 3.4.2 GBP–USD 3.4.3 EUR–USD 3.4.4 Distribution of the Indicator R 3.4.5 Discussion CONCLUSION 4 · Classification of Normal and Abnormal in Financial Markets Regimes 22 25 26 27 28 28 28 28 29 31 33 35 35 37 39 4.1 4.2 INTRODUCTION METHODOLOGY 4.2.1 Summarising Financial Data in DC 4.2.2 Detecting Regime Changes through 4.2.3 Comparing Market Regimes in an Space HMM Indicator 40 41 41 43 44 Contents · vii 4.3 EMPIRICAL STUDY 45 4.3.1 Data Sets 46 4.3.2 Summarising Data under DC 47 4.3.3 Detecting Regime Changes under HMM 47 4.3.4 Observing Market Regimes in the Normalised Indicator Space 48 4.4 RESULTS AND DISCUSSIONS 50 4.4.1 Market Regimes in the Indicator Space 51 4.4.2 Market Regimes under Different Thresholds 52 4.4.3 Discussion 54 4.5 CONCLUSIONS 56 Chapter 5 · Tracking Regime Changes Using Directional Change Indicators 59 5.1 INTRODUCTION 60 5.2 METHODOLOGY 61 5.2.1 Tracking DC Trends 61 5.2.2 Use of a Na ̈ıve Bayes Classifier 62 5.3 EXPERIMENT SETUP 65 5.3.1 Data 65 5.3.2 Regime Changes on the Data 66 5.4 EMPIRICAL RESULTS 66 5.4.1 Calculating Probability 68 5.4.2 B-Simple for Regime Classification 69 5.4.3 B-Strict for Regime Classification 70 5.4.4 Tracked Regime Changes 71 5.4.4.1 Tracked Regime Changes on DJIA Index 71 5.4.4.2 Tracked Regime Changes on FTSE 100 Index 73 5.4.4.3 Tracked Regime Changes on S&P 500 74 5.4.5 Discussion 74 viii · Contents 5.5 Chapter CONCLUSION 6 · Algorithmic Tracking Trading Based on Regime Change 76 79 6.1 6.2 6.3 6.4 6.5 6.6 Chapter OVERVIEW METHODOLOGY 6.2.1 Regime Tracking Information 6.2.2 Trading Algorithm JC1 6.2.3 Trading Algorithm JC2 6.2.4 Control Algorithm CT1 EXPERIMENTAL SETUP 6.3.1 Data 6.3.2 Experimental Parameters 6.3.3 Money Management EXPERIMENT RESULTS 6.4.1 Number of Trades 6.4.2 Final Wealth 6.4.3 Maximum Drawdown DISCUSSIONS 6.5.1 The Primary Goals Are Achieved 6.5.2 Future Work: Regime Tracking Trading Algorithms CONCLUSIONS 7 · Conclusions for Better 79 80 80 81 83 83 84 84 84 85 86 86 87 88 89 89 90 90 93 7.1 7.2 7.3 SUMMARY OF WORK DONE TAKE-HOME MESSAGES FUTURE RESEARCH 7.3.1 Research Directions 93 97 98 99 Contents · ix Appendices 101 Appendix A · A Formal Definition of Directional Change 101 Appendix B · Extended Results of Chapter 3 Appendix C · Experiment Summary of Chapter 4 Appendix D · Detected Regime Changes in Chapter 4 Bibliography 123 Index 129 107 111 119

ادامه ...
برای ارسال نظر لطفا وارد شوید یا ثبت نام کنید
ادامه ...
پشتیبانی محصول

۱- در صورت داشتن هرگونه مشکلی در پرداخت، لطفا با پشتیبانی تلگرام در ارتباط باشید.

۲- برای خرید محصولات لطفا به شماره محصول و عنوان دقت کنید.

۳- شما می توانید فایلها را روی نرم افزارهای مختلف اجرا کنید(هیچگونه کد یا قفلی روی فایلها وجود ندارد).

۴- بعد از خرید، محصول مورد نظر از صفحه محصول قابل دانلود خواهد بود همچنین به ایمیل شما ارسال می شود.

۵- در صورت وجود هر مشکلی در فرایند خرید با تماس بگیرید.