Table of Contents
Keynote Lectures
From Clinical Guidelines to Decision Support . . . . . . . . . . . . . . . . . . . . . . . . . . 3
G. Molino
Artificial Intelligence for Building Learning Health Care Organizations . . . . 13
M. Stefanelli
Timing Is Everything: Temporal Reasoning and Temporal Data
Maintenance in Medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Y. Shahar
Machine Learning for Data Mining in Medicine . . . . . . . . . . . . . . . . . . . . . . . . 47
N. Lavraˇc
Guidelines and Protocols
Guidelines-Based Workflow Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
S. Quaglini, C. Mossa, C. Fassino, M. Stefanelli, A. Cavallini,
G. Micieli
Enhancing Clinical Practice Guideline Compliance by Involving Physicians
in the Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
B. S ́eroussi, J. Bouaud, ́E.-C. Antoine
Application of Therapeutic Protocols: A Tool to Manage Medical Knowledge 86
C. Sauvagnac, J. Stines, A. Lesur, P. Falzon, P. Bey
Decision Support Systems, Knowledge-Based Systems,
Cooperative Systems
From Description to Decision: Towards a Decision Support Training
System for MR Radiology of the Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
B. du Boulay, B. Teather, G. du Boulay, N. Jeffrey, D. Teather,
M. Sharples, L. Cuthbert
Internet-Based Decision-Support Server for Acute Abdominal Pain . . . . . . . 103
H.P. Eich, C. Ohmann
Multi-modal Reasoning in Diabetic Patient Management . . . . . . . . . . . . . . . . 113
S. Montani, R. Bellazzi, L. Portinale, A. Riva, M. Stefanelli
X Table of Contents
Experiences with Case-Based Reasoning Methods and Prototypes for
Medical Knowledge-Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
R. Schmidt, B. Pollwein, L. Gierl
Exploiting Social Reasoning of Open Multi-agent Systems to Enhance
Cooperation in Hospitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
S. Aknine
Influence Diagrams for Neonatal Jaundice Management . . . . . . . . . . . . . . . . . 138
C. Bielza, S. R ́ıos-Insua, M. G ́omez
Electronic Drug Prescribing and Administration - Bedside Medical
Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
I.R. Clark, B.A. McCauley, I.M. Young, P.G. Nightingale, M. Peters,
N.T. Richards, D. Adu
Neonatal Ventilation Tutor (VIE-NVT), a Teaching Program for the
Mechanical Ventilation of Newborn Infants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
W. Horn, C. Popow, C. Stocker, S. Miksch
A Life-Cycle Based Authorisation Expert Database System . . . . . . . . . . . . . 153
Y.-L. O
A Decision-Support System for the Identification, Staging, and Functional
Evaluation of Liver Diseases (HEPASCORE) . . . . . . . . . . . . . . . . . . . . . . . . . . 158
M. Torchio, S. Battista, F. Bar, C. Pollet, M. Marzuoli, M.C. Bucchi,
R. Pagni, G. Molino
Model-Based Systems
A Model-Based Approach for Learning to Identify Cardiac Arrhythmias . . 165
G. Carrault, M.-O. Cordier, R. Quiniou, M. Garreau, J.J. Bellanger,
A. Bardou
An Model-Based System for Pacemaker Reprogramming . . . . . . . . . . . . . . . . 175
P. Lucas, A. Tholen, G. van Oort
Integrating Deep Biomedical Models into Medical Decision Support
Systems: An Interval Constraint Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
J. Cruz, P. Barahona, F. Benhamou
Neural Networks, Causal Probabilistic Networks
A Decision Theoretic Approach to Empirical Treatment of Bacteraemia
Originating from the Urinary Tract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
S. Andreassen, L. Leibovici, H.C. Schønheyder, B. Kristensen,
C. Riekehr, A.G. Kjær, K.G. Olesen
Table of Contents XI
An ECG Ischemic Detection System Based on Self-Organizing Maps and
a Sigmoid Function Pre-processing Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
E.A. Fernandez, J. Presedo, S. Barro
Neural Network Recognition of Otoneurological Vertigo Diseases with
Comparison of Some Other Classification Methods . . . . . . . . . . . . . . . . . . . . . 217
M. Juhola, J. Laurikkala, K. Viikki, Y. Auramo, E. Kentala, I. Pyykk ̈o
A Comparison of Linear and Non-linear Classifiers for the Detection of
Coronary Artery Disease in Stress-ECG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
G. Dorffner, E. Leitgeb, H. Koller
The Case-Based Neural Network Model and Its Use in Medical Expert
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
W. Goodridge, H. Peter, A. Abayomi
Knowledge Representation
A Medical Ontology Library That Integrates the UMLS MetathesaurusTM 239
D.M. Pisanelli, A. Gangemi, G. Steve
The Use of the UMLS Knowledge Sources for the Design of a Domain
Specific Ontology: A Practical Experience in Blood Transfusion . . . . . . . . . . 249
S. Achour, M. Dojat, J.-M. Brethon, G. Blain, E. Lepage
Representing Knowledge Levels in Clinical Guidelines . . . . . . . . . . . . . . . . . . . 254
P. Terenziani, P. Raviola, O. Bruschi, M. Torchio, M. Marzuoli,
G. Molino
Temporal Reasoning
Intelligent Analysis of Clinical Time Series by Combining Structural
Filtering and Temporal Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
R. Bellazzi, C. Larizza, P. Magni, S. Montani, G. De Nicolao
Knowledge-Based Event Detection in Complex Time Series Data . . . . . . . . . 271
J. Hunter, N. McIntosh
Abstracting Steady Qualitative Descriptions over Time from Noisy,
High-Frequency Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
S. Miksch, A. Seyfang, W. Horn, C. Popow
Visualization Techniques for Time-Oriented, Skeletal Plans in Medical
Therapy Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
R. Kosara, S. Miksch
Visualizing Temporal Clinical Data on the WWW . . . . . . . . . . . . . . . . . . . . . . 301
C. Combi, L. Portoni, F. Pinciroli
XII Table of Contents
Machine Learning
Machine Learning in Stepwise Diagnostic Process . . . . . . . . . . . . . . . . . . . . . . 315
M. Kukar, C. Groˇselj
Refinement of Neuro-psychological Tests for Dementia Screening in a Cross
Cultural Population Using Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 326
S. Mani, M.B. Dick, M.J. Pazzani, E.L. Teng, D. Kempler,
I.M. Taussig
The Analysis of Head Inquiry Data Using Decision Tree Techniques . . . . . . 336
A. McQuatt, P.J.D. Andrews, D. Sleeman, V. Corruble, P.A. Jones
Machine Learning for Survival Analysis: A Case Study on Recurrence of
Prostate Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
B. Zupan, J. Demˇsar, M.W. Kattan, J.R. Beck, I. Bratko
ICU Patient State Characterization Using Machine Learning in a Time
Series Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
D. Calvelo, M.-C. Chambrin, D. Pomorski, P. Ravaux
Diagnostic Rules of Increased Reliability for Critical Medical Applications . 361
D. Gamberger, N. Lavraˇc, C. Groˇselj
Machine Learning Inspired Approaches to Combine Standard Medical
Measures at an Intensive Care Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
B. Sierra, N. Serrano, P. Larra ̃naga, E.J. Plasencia, I. Inza,
J.J. Jim ́enez, J.M. De la Rosa, M.L. Mora
A Screening Technique for Prostate Cancer by Hair Chemical Analysis and
Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
P. Wu, K.L. Heng, S.W. Yang, Y.F. Chen, R.S. Mohan, P.H.C. Lim
Natural Language Processing
A Conversational Model for Health Promotion on the World Wide Web . . . 379
A. Cawsey, F. Grasso, R. Jones
Types of Knowledge Required to Personalize Smoking Cessation Letters . . 389
E. Reiter, R. Robertson, L. Osman
Small Is Beautiful - Compact Semantics for Medical Language Processing . 400
M. Romacker, S. Schulz, U. Hahn
Speech Driven Natural Language Understanding for Hands-Busy
Recording of Clinical Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
D.J. Barker, S.C. Lynch, D.S. Simpson, W.A. Corbett
Table of Contents XIII
Automatic Acquisition of Morphological Knowledge for Medical Language
Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
P. Zweigenbaum, N. Grabar
Image Processing and Computer Aided Design
A Multi-agent System for MRI Brain Segmentation . . . . . . . . . . . . . . . . . . . . 423
L. Germond, M. Dojat, C. Taylor, C. Garbay
Modelling Blood Vessels of the Eye with Parametric L-Systems Using
Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
G. K ́okai, Z. T ́oth, R. V ́anyi
Animating Medical and Safety Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
P. Hammond, P. Wells, S. Modgil
Active Shape Models for Customised Prosthesis Design . . . . . . . . . . . . . . . . . 448
T.J. Hutton, P. Hammond, J.C. Davenport
Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
ادامه ...
بستن ...