Applications of computational intelligence in data-driven trading - Original PDF

دانلود کتاب Applications of computational intelligence in data-driven trading - Original PDF

Author: Doloc, Cris

0 (0)

توضیحات کتاب :

"The objective of this book is to introduce the reader to the field of Computational Finance using the framework of Machine Learning as a tool of scientific inquiry. It is an attempt to integrate these two topics: how to use Machine Learning as the tool of choice in solving topical problems in Computational Finance. Readers will learn modern methods used by financial engineers and quantitative analysts to access, Read more...

سرچ در وردکت | سرچ در گودریدز | سرچ در اب بوکز | سرچ در آمازون | سرچ در گوگل بوک

643 بازدید 0 خرید

ضمانت بازگشت

ضمانت بازگشت

فایل های تست شده

فایل های تست شده

پرداخت آنلاین

پرداخت آنلاین

تضمین کیفیت

تضمین کیفیت

دانلود فوری

دانلود فوری

Two decades of participation in the digital transformation of the trading industry as a system architect, quant, and trader, coupled with the experience of teaching in the Financial-Mathematics program at the University of Chicago, provided me with a unique perspective that I will convey to the reader throughout this book. As both a practitioner and an educator, I wrote this book to assert the fact that the trading indus- try was, and continues to be, a very fertile ground for the adoption of cutting-edge technologies. The central message of this book is that the development of problem-solving skills is much more important for the career advancement of a quantitative practitioner than the accretion and mastering of an ever-increasing set of new tools that are flooding both the technical literature and the higher education curricula. While the majority of these tools become obsolete soon after their release into the public domain, acquir- ing an adequate level of problem-solving expertise will endow the learner with a long-lasting know-how that will transcend ephemeral paradigms and cultural trends. If the use of an exhaustive tool set is providing the solution architect with hori- zontal scalability, mastering the expertise of what tools should be used for any given problem will grant the user with the vertical scalability that is absolutely necessary for implementing intelligent solutions. While the majority of books about the appli- cation of machine intelligence to practical problem domains are focused on how to use tools and techniques, this book is built around six different types of problems that are relevant for the quantitative trading practitioner. The tools and techniques used to solve these problem types are described here in the context of the case studies presented, and not the other way around.

چکیده فارسی

 

دو دهه مشارکت در تحول دیجیتال صنعت تجارت به عنوان یک معمار سیستم، کمیت و معامله گر، همراه با تجربه تدریس در برنامه مالی-ریاضیات در دانشگاه شیکاگو، دیدگاه منحصر به فردی را برای من فراهم کرد. من در طول این کتاب به خواننده منتقل خواهم کرد. من هم به عنوان یک پزشک و هم به عنوان یک مربی، این کتاب را نوشتم تا ثابت کنم که صنعت بازرگانی زمینه بسیار مناسبی برای پذیرش فناوری‌های پیشرفته بوده و همچنان ادامه دارد. پیام اصلی این کتاب این است که توسعه مهارت‌های حل مسئله برای پیشرفت شغلی یک پزشک کمی مهم‌تر از جمع‌آوری و تسلط بر مجموعه‌ای روزافزون از ابزارهای جدید است که هم ادبیات فنی و هم ادبیات را سیل می‌کنند. برنامه های درسی آموزش عالی در حالی که اکثر این ابزارها به زودی پس از انتشار در حوزه عمومی منسوخ می شوند، کسب سطح کافی از تخصص حل مسئله به یادگیرنده دانش طولانی مدتی می بخشد که از پارادایم های زودگذر و روندهای فرهنگی فراتر می رود. اگر استفاده از یک مجموعه ابزار جامع مقیاس پذیری افقی را برای معمار راه حل فراهم کند، تسلط بر تخصص در مورد ابزارهایی که باید برای هر مشکلی استفاده شود، مقیاس پذیری عمودی را به کاربر می دهد که برای اجرای راه حل های هوشمند کاملاً ضروری است. در حالی که اکثر کتاب‌های مربوط به کاربرد هوش ماشینی در حوزه‌های مشکل عملی بر نحوه استفاده از ابزارها و تکنیک‌ها متمرکز شده‌اند، این کتاب حول شش نوع مشکل مختلف ساخته شده است که برای متخصصان تجارت کمی مرتبط هستند. ابزارها و تکنیک های مورد استفاده برای حل این نوع مشکلات در اینجا در چارچوب مطالعات موردی ارائه شده توضیح داده شده است و نه برعکس.

 

ادامه ...

Author(s): Doloc, Cris

Publisher: Wiley, Year: 2020

ISBN: 9781119550518,1119550513,9781119550525,1119550521

ادامه ...

Contents About the Author xvii Acknowledgments xix About the Website xxi Introduction xxiii Motivation xxiv Target Audience xxvi Book Structure xxvii 1 The Evolution of Trading Paradigms 1 1.1 Infrastructure-Related Paradigms in Trading 1 1.1.1 Open Outcry Trading 2 1.1.2 Advances in Communication Technology 2 1.1.3 The Digital Revolution in the Financial Markets 3 1.1.4 The High-Frequency Trading Paradigm 5 1.1.5 Blockchain and the Decentralization of Markets 6 1.2 Decision-Making Paradigms in Trading 7 1.2.1 Discretionary Trading 8 1.2.2 Systematic Trading 8 1.2.3 Algorithmic Trading 9 1.3 The New Paradigm of Data-Driven Trading 11 References 14 ix x CONTENTS 2 The Role of Data in Trading and Investing 15 2.1 The Data-Driven Decision-Making Paradigm 15 2.2 The Data Economy is Fueling the Future 17 2.2.1 The Value of Data – Data as an Asset 18 2.3 Defining Data and Its Utility 20 2.4 The Journey from Data to Intelligence 24 2.5 The Utility of Data in Trading and Investing 30 2.6 The Alternative Data and Its Use in Trading and Investing 34 References 36 3 Artificial Intelligence – Between Myth and Reality 39 3.1 Introduction 39 3.2 The Evolution of AI 41 3.2.1 Early History 41 3.2.2 The Modern AI Era 43 3.2.3 Important Milestones in the Development of AI 44 3.2.4 Projections for the Immediate Future 48 3.2.5 Meta-Learning – An Exciting New Development 49 3.3 The Meaning of AI – A Critical View 51 3.4 On the Applicability of AI to Finance 54 3.4.1 Data Stationarity 57 3.4.2 Data Quality 58 3.4.3 Data Dimensionality 59 3.5 Perspectives and Future Directions 60 References 62 4 Computational Intelligence – A Principled Approach for the Era of Data Exploration 63 4.1 Introduction to Computational Intelligence 63 4.1.1 Defining Intelligence 63 4.1.2 What Is Computational Intelligence? 64 4.1.3 Mapping the Field of Study 66 4.1.4 Problems vs. Tools 68 4.1.5 Current Challenges 69 4.1.6 The Future of Computational Intelligence 70 4.1.7 Examples in Finance 71 CONTENTS xi 4.2 The PAC Theory 72 4.2.1 The Probably Approximately Correct Framework 73 4.2.2 Why AI Is a Very Lofty Goal to Achieve 75 4.2.3 Examples of Ecorithms in Finance 78 4.3 Technology Drivers Behind the ML Surge 81 4.3.1 Data 82 4.3.2 Algorithms 82 4.3.3 Hardware Accelerators 82 References 84 5 How to Apply the Principles of Computational Intelligence in Quantitative Finance 87 5.1 The Viability of Computational Intelligence 87 5.2 On the Applicability of CI to Quantitative Finance 91 5.3 A Brief Introduction to Reinforcement Learning 94 5.3.1 Defining the Agent 96 5.3.2 Model-Based Markov Decision Process 98 5.3.3 Model-Free Reinforcement Learning 101 5.4 Conclusions 104 References 104 6 Case Study 1: Optimizing Trade Execution 107 6.1 Introduction to the Problem 107 6.1.1 On Limit Orders and Market Microstructure 109 6.1.2 Formulation of Base-Line Strategies 111 6.1.3 A Reinforcement Learning Formulation for the Optimized Execution Problem 112 6.2 Current State-of-the-Art in Optimized Trade Execution 114 6.3 Implementation Methodology 116 6.3.1 Simulating the Interaction with the Market Microstructure 116 6.3.2 Using Dynamic Programming to Optimize Trade Execution 118 6.3.3 Using Reinforcement Learning to Optimize Trade Execution 119 6.4 Empirical Results 122 6.4.1 Application to Equities 122 6.4.2 Using Private Variables Only 123 xii CONTENTS 6.4.3 Using Both Private and Market Variables 123 6.4.4 Application to Futures 124 6.4.5 Another Example 126 6.5 Conclusions and Future Directions 127 6.5.1 Further Research 127 References 128 7 Case Study 2: The Dynamics of the Limit Order Book 129 7.1 Introduction to the Problem 129 7.1.1 The New Era of Prediction 130 7.1.2 New Challenges 131 7.1.3 High-Frequency Data 132 7.2 Current State-of-the-Art in the Prediction of Directional Price Movement in the LOB 133 7.2.1 The Contrarians 136 7.3 Using Support Vector Machines and Random Forest Classifiers for Directional Price Forecast 138 7.3.1 Empirical Results 139 7.4 Studying the Dynamics of the LOB with Reinforcement Learning 141 7.4.1 Empirical Results 142 7.4.2 Conclusions 144 7.5 Studying the Dynamics of the LOB with Deep Neural Networks 145 7.5.1 Results 148 7.6 Studying the Dynamics of the Limit Order Book with Long Short-Term Memory Networks 149 7.6.1 Empirical Results 152 7.6.2 Conclusions 153 7.7 Studying the Dynamics of the LOB with Convolutional Neural Networks 153 7.7.1 Empirical Results 155 7.7.2 Conclusions 156 References 157 8 Case Study 3: Applying Machine Learning to Portfolio Management 159 8.1 Introduction to the Problem 159 8.1.1 The Problem of Portfolio Diversification 160 CONTENTS xiii 8.2 Current State-of-the-Art in Portfolio Modeling 161 8.2.1 The Classic Approach 161 8.2.2 The ML Approach 162 8.3 A Deep Portfolio Approach to Portfolio Optimization 163 8.3.1 Autoencoders 164 8.3.2 Methodology – The Four-Step Algorithm 166 8.3.3 Results 167 8.4 A Q-Learning Approach to the Problem of Portfolio Optimization 167 8.4.1 Problem Statement 168 8.4.2 Methodology 169 8.4.3 The Deep Q-Learning Algorithm 169 8.4.4 Results 170 8.5 A Deep Reinforcement Learning Approach to Portfolio Management 170 8.5.1 Methodology 170 8.5.2 Data 171 8.5.3 The RL Setting: Agent, Environment, and Policy 172 8.5.4 The CNN Implementation 172 8.5.5 The RNN and LSTM Implementations 172 8.5.6 Results 173 References 174 9 Case Study 4: Applying Machine Learning to Market Making 175 9.1 Introduction to the Problem 175 9.2 Current State-of-the-Art in Market Making 177 9.3 Applications of Temporal-Difference RL in Market Making 180 9.3.1 Methodology 180 9.3.2 The Simulator 181 9.3.3 Market Making Agent Specification 182 9.3.4 Empirical Results 185 9.4 Market Making in High-Frequency Trading Using RL 189 9.4.1 Methodology 190 9.4.2 Experimental Setting 191 9.4.3 Results and Conclusions 192 9.5 Other Research Studies 192 References 193 xiv CONTENTS 10 Case Study 5: Applications of Machine Learning to Derivatives Valuation 197 10.1 Introduction to the Problem 197 10.1.1 Problem Statement and Research Questions 199 10.2 Current State-of-the-Art in Derivatives Valuation by Applying ML 200 10.2.1 The Beginnings: 1992–2004 201 10.2.2 The Last Decade 202 10.3 Using Deep Learning for Valuation of Derivatives 204 10.3.1 Implementation Methodology 205 10.3.2 Empirical Results 207 10.3.3 Conclusions and Future Directions 208 10.3.4 Other Research Studies 208 10.4 Using RL for Valuation of Derivatives 210 10.4.1 Using a Simple Markov Decision Process 210 10.4.2 The Q-Learning Black-Scholes Model (QLBS) 212 References 214 11 Case Study 6: Using Machine Learning for Risk Management and Compliance 217 11.1 Introduction to the Problem 217 11.1.1 Challenges 218 11.1.2 The Problem 219 11.2 Current State-of-the-Art for Applications of ML to Risk Management and Compliance 219 11.2.1 Credit Risk 219 11.2.2 Market Risk 220 11.2.3 Operational Risk 221 11.2.4 Regulatory Compliance Risk and RegTech 222 11.2.5 Current Challenges and Future Directions 223 11.3 Machine Learning in Credit Risk Modeling 224 11.3.1 Data 225 11.3.2 Models 225 11.3.3 Results 226 11.4 Using Deep Learning for Credit Scoring 227 11.4.1 Introduction 227 11.4.2 Deep Belief Networks and Restricted Boltzmann Machines 228 11.4.3 Empirical Results 230 CONTENTS xv 11.5 Using ML in Operational Risk and Market Surveillance 230 11.5.1 Introduction 230 11.5.2 An ML Approach to Market Surveillance 232 11.5.3 Conclusions 233 References 233 12 Conclusions and Future Directions 237 12.1 Concluding Remarks 237 12.2 The Paradigm Shift 239 12.2.1 Mathematical Models vs. Data Inference 240 12.3 De-Noising the AI Hype 243 12.3.1 Why Intellectual Honesty Should Not Be Abandoned 244 12.4 An Emerging Engineering Discipline 245 12.4.1 The Problem 246 12.4.2 The Market 246 12.4.3 A Possible Solution 246 12.5 Future Directions 247 References 248 Index 249

ادامه ...
برای ارسال نظر لطفا وارد شوید یا ثبت نام کنید
ادامه ...
پشتیبانی محصول

۱- در صورت داشتن هرگونه مشکلی در پرداخت، لطفا با پشتیبانی تلگرام در ارتباط باشید.

۲- برای خرید محصولات لطفا به شماره محصول و عنوان دقت کنید.

۳- شما می توانید فایلها را روی نرم افزارهای مختلف اجرا کنید(هیچگونه کد یا قفلی روی فایلها وجود ندارد).

۴- بعد از خرید، محصول مورد نظر از صفحه محصول قابل دانلود خواهد بود همچنین به ایمیل شما ارسال می شود.

۵- در صورت وجود هر مشکلی در فرایند خرید با تماس بگیرید.