Algorithmic Trading Methods: Applications Using Advanced Statistics, Optimization, and Machine Learning Techniques - Original PDF

دانلود کتاب Algorithmic Trading Methods: Applications Using Advanced Statistics, Optimization, and Machine Learning Techniques - Original PDF

Author: Robert Kissell

0 (0)

توضیحات کتاب :

Algorithmic Trading Methods: Applications using Advanced Statistics, Optimization, and Machine Learning Techniques, Second Edition, is a sequel to The Science of Algorithmic Trading and Portfolio Management. This edition includes new chapters on algorithmic trading, advanced trading analytics, regression analysis, optimization, and advanced statistical methods. Increasing its focus on trading strategies and models, this edition includes new insights into the ever-changing financial environment, pre-trade and post-trade analysis, liquidation cost & risk analysis, and compliance and regulatory reporting requirements. Highlighting new investment techniques, this book includes material to assist in the best execution process, model validation, quality and assurance testing, limit order modeling, and smart order routing analysis. Includes advanced modeling techniques using machine learning, predictive analytics, and neural networks. The text provides readers with a suite of transaction cost analysis functions packaged as a TCA library. These programming tools are accessible via numerous software applications and programming languages.

سرچ در وردکت | سرچ در گودریدز | سرچ در اب بوکز | سرچ در آمازون | سرچ در گوگل بوک

647 بازدید 0 خرید

ضمانت بازگشت

ضمانت بازگشت

فایل های تست شده

فایل های تست شده

پرداخت آنلاین

پرداخت آنلاین

تضمین کیفیت

تضمین کیفیت

دانلود فوری

دانلود فوری

To say that electronic algorithmic trading has disrupted the financial envi- ronment is truly an understatement. Algorithmic trading has transformed the financial marketsdfrom the antiquated days of manual labor, human interaction, pushing, yelling, shoving, paper confirmations, and the occa- sional fist-fightdinto a system with electronic audit trails and trading facil- itated using computers, complex mathematical formulas, machine learning, and artificial intelligence. Nowadays, the trading floors of these antiquated exchanges more resemble a university library than they do a global center of trade and commerce. Many of the glamourous trading floors of years ago, such as the floor of the New York Stock Exchange, have been relegated to just another stop on a historical walking tour of downtown New York City. Trading floors are no longer an active center of trading commerce. Trading floors are relatively quiet and are no longer littered with filled will paper or- ders and confirmations. Today, all trading occurs electronically in data cen- ters with computers rather than people matching orders. In 2019, electronic trading comprised approximately 99.9% of all equity volume and algorithmic trading comprised approximately 92% of all equity volume. 1 The remaining 8% of the orders that are not executed via an algo- rithm are still transacted electronically. But in these situations, brokers still route orders via a computer trading system to different exchanges, venues, and/or dark pool to be transacted in accordance with specified pricing rules define by these brokers.

چکیده فارسی

 

اینکه بگوییم تجارت الگوریتمی الکترونیکی محیط مالی را مختل کرده است واقعاً دست کم گرفته شده است. معاملات الگوریتمی بازارهای مالی را از روزهای کهنه کار یدی، تعامل انسانی، هل دادن، فریاد زدن، هل دادن، تاییدیه های کاغذی و مشت های گاه و بیگاه به سیستمی با مسیرهای حسابرسی الکترونیکی و تجارت تسهیل شده با استفاده از رایانه، با روش های پیچیده ریاضی تبدیل کرده است. فرمول ها، یادگیری ماشین و هوش مصنوعی. امروزه، طبقه‌های معاملاتی این صرافی‌های قدیمی بیش از آنکه به یک مرکز تجاری و بازرگانی جهانی شباهت داشته باشند، شبیه یک کتابخانه دانشگاهی است. بسیاری از طبقات معاملاتی پر زرق و برق سال‌ها پیش، مانند طبقه بازار بورس نیویورک، تنها به توقف دیگری در یک تور پیاده‌روی تاریخی در مرکز شهر نیویورک منتقل شده‌اند. طبقات معاملاتی دیگر مرکز فعال تجارت تجاری نیستند. طبقات معاملاتی نسبتاً ساکت هستند و دیگر مملو از سفارشات و تأییدیه های کاغذی پر نیستند. امروزه، تمام معاملات به‌جای تطبیق سفارش‌ها توسط افراد، به‌صورت الکترونیکی در مراکز داده با رایانه انجام می‌شود. در سال 2019، معاملات الکترونیکی تقریباً 99.9٪ از کل حجم سهام و معاملات الگوریتمی تقریباً 92٪ از کل حجم سهام را تشکیل می دادند. 1 8% باقیمانده از سفارشاتی که از طریق یک الگوریتم اجرا نمی شوند هنوز به صورت الکترونیکی انجام می شوند. اما در این شرایط، کارگزاران همچنان سفارش‌ها را از طریق یک سیستم معاملاتی رایانه‌ای به صرافی‌ها، مکان‌ها، و/یا استخر تاریک مختلف هدایت می‌کنند تا مطابق با قوانین قیمت‌گذاری مشخص شده توسط این کارگزاران معامله شوند.

 

ادامه ...

Author(s): Robert Kissell

Publisher: Academic Press, Year: 2020

ISBN: 0128156309,9780128156308

ادامه ...

CHAPTER 9 Machine Learning Techniques........................................................ 221 Introduction ............................................................................................... 221 Types of Machine Learning...................................................................... 224 Examples ................................................................................................... 225 Cluster Analysis ................................................................................... 225 Classification ............................................................................................. 228 Regression................................................................................................. 229 Neural Networks ....................................................................................... 231 CHAPTER 10 Estimating I-Star Market Impact Model Parameters .......................... 233 Introduction ............................................................................................... 233 I-Star Market Impact Model ..................................................................... 234 Scientific Method ...................................................................................... 235 Step 1: Ask a Question ........................................................................ 235 Step 2: Research the Problem .............................................................. 235 Step 3: Construct a Hypothesis............................................................ 235 Step 4: Test the Hypothesis ................................................................. 236 Step 6: Conclusions Communicate ...................................................... 236 Underlying Data Set............................................................................. 245 Data Definitions ................................................................................... 248 Imbalance/Order Size ........................................................................... 249 Average daily volume .......................................................................... 249 Actual market volume.......................................................................... 249 Stock volatility ..................................................................................... 249 POV Rate ............................................................................................. 249 Arrival Cost.......................................................................................... 250 Model Verification ............................................................................... 250 Model Verification #1: Graphical Illustration...................................... 251 Model Verification #2: Regression Analysis ....................................... 251 Model Verification #3: z-Score Analysis............................................. 251 Model Verification #4: Error Analysis ................................................ 252 Stock Universe ..................................................................................... 252 Analysis Period .................................................................................... 252 Time Period.......................................................................................... 252 Number of Data Points ........................................................................ 252 Imbalance ............................................................................................. 252 Side....................................................................................................... 253 Volume ................................................................................................. 253 Turnover ............................................................................................... 253 VWAP .................................................................................................. 253 Contents xi First Price ............................................................................................. 254 Average Daily Volume ........................................................................ 254 Annualized Volatility ........................................................................... 254 Size ....................................................................................................... 254 POV Rate ............................................................................................. 255 Cost ...................................................................................................... 255 Estimating Model Parameters .............................................................. 255 Sensitivity Analysis.............................................................................. 257 Cost Curves .......................................................................................... 262 Statistical Analysis ............................................................................... 262 Stock-Specific Error Analysis .............................................................. 265 CHAPTER 11 Risk, Volatility, and Factor Models ................................................. 269 Introduction ............................................................................................... 269 Volatility Measures ................................................................................... 270 Log-Returns.......................................................................................... 270 Average Return .................................................................................... 270 Variance ............................................................................................... 270 Volatility............................................................................................... 271 Covariance............................................................................................ 271 Correlation............................................................................................ 271 Dispersion............................................................................................. 271 Value-at-Risk........................................................................................ 272 Implied Volatility ...................................................................................... 272 Beta ...................................................................................................... 273 Range.................................................................................................... 273 Forecasting Stock Volatility ..................................................................... 274 Volatility Models ................................................................................. 274 Determining Parameters via Maximum Likelihood Estimation .......... 277 Historical Data and Covariance ................................................................ 280 False Relationships............................................................................... 281 Degrees of Freedom ............................................................................. 283 Factor Models ........................................................................................... 288 Matrix Notation.................................................................................... 289 Factor Model in Matrix Notation......................................................... 290 Types of Factor Models ............................................................................ 292 Index Model ......................................................................................... 292 Macroeconomic Factor Models............................................................ 293 Statistical Factor Models...................................................................... 295 xii Contents CHAPTER 12 Volume Forecasting Techniques ..................................................... 301 Introduction ............................................................................................... 301 Market Impact Model ............................................................................... 301 Average Daily Volume ............................................................................. 303 Methodology ........................................................................................ 303 Definitions ............................................................................................ 303 Monthly Volume Forecasting Model................................................... 304 Analysis................................................................................................ 304 Regression Results ............................................................................... 306 Observations Over the 19-Year Period: 2000e18 ................................... 306 Observations Over the Most Recent 3-Year Period: 2016e18 ................ 308 Volumes and Stock Price Correlation.................................................. 309 Forecasting Daily Volumes....................................................................... 309 Our Daily Volume Forecasting Analysis is as Follows....................... 310 Variable Notation ................................................................................. 311 ARMA Daily Forecasting Model......................................................... 311 Analysis Goal ....................................................................................... 311 Step 1. Determine Which is More Appropriate: ADV or MDV and the Historical Look-Back Number of Days ................................. 312 Conclusion #1 ...................................................................................... 312 Step 2. Estimate the DayOfWeek(t) Parameter .................................... 314 Conclusion #2 ...................................................................................... 314 Step 3. Estimate the Autoregressive Parameter bb................................ 315 Forecast Improvements ........................................................................ 316 Daily Volume Forecasting Model........................................................ 316 Conclusion #3 ...................................................................................... 316 Forecasting Intraday Volumes Profiles ................................................ 317 Forecasting Intraday Volume Profiles.................................................. 320 Predicting Remaining Daily Volume................................................... 321 CHAPTER 13 Algorithmic Decision-Making Framework ......................................... 323 Introduction ............................................................................................... 323 Equations................................................................................................... 324 Variables............................................................................................... 324 Important Equations ............................................................................. 325 Algorithmic Decision-Making Framework............................................... 325 Select Benchmark Price ....................................................................... 326 Comparison of Benchmark Prices ............................................................ 329 Specify Trading Goal ........................................................................... 330 Specify Adaptation Tactic.................................................................... 337 Contents xiii Projected Cost ...................................................................................... 338 Comparison Across Adaptation Tactics ................................................... 345 Modified Adaptation Tactics..................................................................... 346 How Often Should we Reoptimization Our Tactic?............................ 347 CHAPTER 14 Portfolio Algorithms and Trade Schedule Optimization ...................... 349 Introduction ............................................................................................... 349 Trader’s Dilemma ..................................................................................... 351 Variables............................................................................................... 351 Transaction Cost Equations ...................................................................... 352 Market Impact ...................................................................................... 353 Price Appreciation................................................................................ 353 Timing Risk.......................................................................................... 354 One-Sided Optimization Problem ........................................................ 354 Optimization Formulation......................................................................... 354 Constraint Description.......................................................................... 355 Portfolio Optimization Techniques ........................................................... 358 Quadratic Programming Approach ...................................................... 358 Trade Schedule Exponential ................................................................ 360 Residual Schedule Exponential............................................................ 361 Trading Rate Parameter........................................................................ 362 Comparison of Optimization Techniques ............................................ 364 Portfolio Adaptation Tactics ..................................................................... 368 Description of AIM and PIM for Portfolio Trading ............................ 370 How Often Should we Reoptimize? .................................................... 371 Appendix .............................................................................................. 372 CHAPTER 15 Advanced Algorithmic Modeling Techniques ..................................... 375 Introduction ............................................................................................... 375 Trading Cost Equations ............................................................................ 375 Model Inputs ........................................................................................ 376 Trading Strategy................................................................................... 376 Percentage of Volume .......................................................................... 377 Trading Rate......................................................................................... 377 Trade Schedule..................................................................................... 378 Comparison of POV Rate to Trade Rate ............................................. 378 Trading Time ............................................................................................ 378 Trading Risk Components ........................................................................ 379 Trading Cost ModelsdReformulated.................................................. 380 Market Impact Expression ................................................................... 380 Timing Risk Equation .......................................................................... 382 xiv Contents Derivation of the 1/3 Factor................................................................. 384 Timing Risk For a Basket of Stock ..................................................... 387 Comparison of Market Impact Estimates............................................. 388 Forecasting Covariance ........................................................................ 390 Efficient Trading Frontier .................................................................... 391 Single Stock Trade Cost Objective Function....................................... 393 Portfolio Trade Cost Objective Function ............................................. 394 Managing Portfolio Risk...................................................................... 395 Residual Risk Curve ............................................................................ 395 Minimum Trading Risk Quantity......................................................... 397 Maximum Trading Opportunity........................................................... 398 When to Use These Criteria? ............................................................... 400 Program-Block Decomposition............................................................ 400 CHAPTER 16 Decoding and Reverse Engineering Broker Models with Machine Learning Techniques .................................................................... 405 Introduction ............................................................................................... 405 Pre-Trade of Pre-Trades............................................................................ 406 I-Star Model Approach ........................................................................ 407 Neural Network Model Approach ....................................................... 413 Portfolio Optimization .............................................................................. 416 What Should the Portfolio Manager Do? ............................................ 419 Deriving Portfolio Optimization Market Impact Models .................... 419 Example: Share Quantity Regression Model....................................... 420 Example: Trade Value Regression Model ........................................... 425 CHAPTER 17 Portfolio Construction with Transaction Cost Analysis ........................ 429 Introduction ............................................................................................... 429 Portfolio Optimization and Constraints .................................................... 430 Transaction Costs in Portfolio Optimization ............................................ 434 Portfolio Management Process ................................................................. 437 Example: Efficient Trading Frontier With and Without Short Positions .............................................................................................. 437 Example: Maximizing Investor Utility ................................................ 438 Trading Decision Process ......................................................................... 439 What is the Appropriate Optimal Strategy to Use? ............................. 440 Unifying the Investment and Trading Theories........................................ 441 Which Execution Strategy Should the Trader Use? ............................ 443 Cost-Adjusted Frontier.............................................................................. 445 Determining the Appropriate Level of Risk Aversion ............................. 447 Best Execution Frontier ............................................................................ 448 Contents xv Portfolio Construction with Transaction Costs......................................... 449 Quest for Best Execution Frontier ....................................................... 451 Example .................................................................................................... 456 Important Findings ............................................................................... 464 Conclusion ................................................................................................ 466 CHAPTER 18 Quantitative Analysis with TCA ...................................................... 469 Introduction ............................................................................................... 469 Quantitative Overlays........................................................................... 469 Market Impact Factor Scores ............................................................... 469 Cost Curves .......................................................................................... 469 Alpha Capture ...................................................................................... 470 Investment Capacity............................................................................. 470 Portfolio Optimization.......................................................................... 470 Backtesting ........................................................................................... 470 Liquidation Cost................................................................................... 471 Sensitivity Analysis.............................................................................. 471 Are The Existing Models Useful Enough For Portfolio Construction?....................................................................................... 472 Current State of Vendor Market Impact Models ................................. 473 Pretrade of Pretrades ................................................................................. 475 Applications ......................................................................................... 476 Example #1 .......................................................................................... 476 Example #2 .......................................................................................... 477 Example #3 .......................................................................................... 477 Example #4 .......................................................................................... 477 How Expensive is it to Trade? ................................................................. 478 Acquisition and Liquidation Costs....................................................... 481 Portfolio ManagementdScreening Techniques .................................. 484 Backtesting Strategies ............................................................................... 487 Market Impact Simulation ........................................................................ 490 Simulation Scenario ............................................................................. 491 Multi-Asset Class Investing ...................................................................... 495 Investing in Beta Exposure and Other Factors .................................... 495 Example #5 .......................................................................................... 495 Multi-Asset Trading Costs........................................................................ 498 Global Equity Markets ......................................................................... 500 Multi-Asset Classes.............................................................................. 501 Market Impact Factor Scores .................................................................... 508 Current State of Market Impact Factor Scores .................................... 510 xvi Contents Market Impact Factor Score Analysis ...................................................... 510 Alpha Capture Program ............................................................................ 512 Example #6 .......................................................................................... 513 Example #7 .......................................................................................... 514 Alpha Capture Curves.......................................................................... 516 CHAPTER 19 Machine Learning and Trade Schedule Optimization.......................... 519 Introduction ............................................................................................... 519 Multiperiod Trade Schedule Optimization Problem................................. 520 Setting up the Problem......................................................................... 520 Trader’s Dilemma Objective Function................................................. 521 Nonlinear Optimization Convergence ...................................................... 523 Newton’s Method................................................................................. 525 Example #1 .......................................................................................... 526 Example #2 .......................................................................................... 527 Machine Learning ..................................................................................... 528 Neural Networks .................................................................................. 530 Neural Network Errors......................................................................... 531 Machine Learning Training Experiment................................................... 531 Step I: Generating Simulated Trade Baskets ....................................... 532 Step II: Compile Stock and Basket Data Statistics.............................. 532 Step III: Solve the Multiperiod Trade Schedule Optimization Problem ............................................................................................... 534 Step IV: Train the NNET..................................................................... 535 Step V. Calculate the Initial Parameter Values for the NNET ............ 536 Principal Component Analysis............................................................. 536 Stepwise Regression Analysis.............................................................. 536 Neural Network Structure .................................................................... 539 Neural Network Error .......................................................................... 539 Performance Results ................................................................................. 540 Conclusions............................................................................................... 542 CHAPTER 20 TCA Analysis Using MATLAB, Excel, and Python ................................ 543 Introduction ............................................................................................... 543 Transaction Cost Analysis Functions ....................................................... 545 Transaction Cost Model............................................................................ 547 MATLAB Functions................................................................................. 549 Excel and Python Functions ..................................................................... 549 TCA Report Examples.............................................................................. 550 Conclusion ................................................................................................ 558 Contents xvii CHAPTER 21 Transaction Cost Analysis (TCA) Library ........................................... 559 Introduction ............................................................................................... 559 TCA Library......................................................................................... 560 Transaction Cost Analysis Using the TCA Library ................................. 561 List of TCA Functions ......................................................................... 565 Bibliography.................................................................................................................... 569 Index ............................................................................................................................... 577

ادامه ...
برای ارسال نظر لطفا وارد شوید یا ثبت نام کنید
ادامه ...
پشتیبانی محصول

۱- در صورت داشتن هرگونه مشکلی در پرداخت، لطفا با پشتیبانی تلگرام در ارتباط باشید.

۲- برای خرید محصولات لطفا به شماره محصول و عنوان دقت کنید.

۳- شما می توانید فایلها را روی نرم افزارهای مختلف اجرا کنید(هیچگونه کد یا قفلی روی فایلها وجود ندارد).

۴- بعد از خرید، محصول مورد نظر از صفحه محصول قابل دانلود خواهد بود همچنین به ایمیل شما ارسال می شود.

۵- در صورت وجود هر مشکلی در فرایند خرید با تماس بگیرید.