Character Recognition Systems [OCR] - Original PDF

دانلود کتاب Character Recognition Systems [OCR] - Original PDF

Author: Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen

0 (0)

توضیحات کتاب :

"Much of pattern recognition theory and practice, including methods such as Support Vector Machines, has emerged in an attempt to solve the character recognition problem. This book is written by very well-known academics who have worked in the field for many years and have made significant and lasting contributions. The book will no doubt be of value to students and practitioners." -Sargur N. Srihari, SUNY Distinguished Professor, Department of Computer Science and Engineering, and Director, Center of Excellence for Document Analysis and Recognition (CEDAR), University at Buffalo, The State University of New York "The disciplines of optical character recognition and document image analysis have a history of more than forty years. In the last decade, the importance and popularity of these areas have grown enormously. Surprisingly, however, the field is not well covered by any textbook. This book has been written by prominent leaders in the field. It includes all important topics in optical character recognition and document analysis, and is written in a very coherent and comprehensive style. This book satisfies an urgent need. It is a volume the community has been awaiting for a long time, and I can enthusiastically recommend it to everybody working in the area." -Horst Bunke, Professor, Institute of Computer Science and Applied Mathematics (IAM), University of Bern, Switzerland In Character Recognition Systems, the authors provide practitioners and students with the fundamental principles and state-of-the-art computational methods of reading printed texts and handwritten materials. The information presented is analogous to the stages of a computer recognition system, helping readers master the theory and latest methodologies used in character recognition in a meaningful way. This book covers: * Perspectives on the history, applications, and evolution of Optical Character Recognition (OCR) * The most widely used pre-processing techniques, as well as methods for extracting character contours and skeletons * Evaluating extracted features, both structural and statistical * Modern classification methods that are successful in character recognition, including statistical methods, Artificial Neural Networks (ANN), Support Vector Machines (SVM), structural methods, and multi-classifier methods * An overview of word and string recognition methods and techniques * Case studies that illustrate practical applications, with descriptions of the methods and theories behind the experimental results Each chapter contains major steps and tricks to handle the tasks described at-hand. Researchers and graduate students in computer science and engineering will find this book useful for designing a concrete system in OCR technology, while practitioners will rely on it as a valuable resource for the latest advances and modern technologies that aren't covered elsewhere in a single book.

سرچ در وردکت | سرچ در گودریدز | سرچ در اب بوکز | سرچ در آمازون | سرچ در گوگل بوک

868 بازدید 0 خرید

ضمانت بازگشت

ضمانت بازگشت

فایل های تست شده

فایل های تست شده

پرداخت آنلاین

پرداخت آنلاین

تضمین کیفیت

تضمین کیفیت

دانلود فوری

دانلود فوری

This chapter presents an overview of the problems associated with character recognition. It includes a brief description of the history of OCR (optical character recognition), the extensive efforts involved to make it work, the recent international activities that have stimulated the growth of research in handwriting recognition and document analysis, a short summary of the topics to be discussed in the other chapters, and a list of relevant references. 1.1 GENERATION AND RECOGNITION OF CHARACTERS Most people learn to read and write during their first few years of education. By the time they have grown out of childhood, they have already acquired very good reading and writing skills, including the ability to read most texts, whether they are printed in different fonts and styles, or handwritten neatly or sloppily. Most people have no problem in reading the following: light prints or heavy prints; upside down prints; advertisements in fancy font styles; characters with flowery ornaments and missing parts; and even characters with funny decorations, stray marks, broken, or fragmented parts; misspelled words; and artistic and figurative designs. At times, the characters and words may appear rather distorted and yet, by experience and by context, most people can still figure them out. On the contrary, despite more than five decades of intensive research, the reading skill of the computer is still way behind that of human

چکیده فارسی

 

این فصل مروری بر مشکلات مرتبط با تشخیص شخصیت ارائه می‌کند. این شامل شرح مختصری از تاریخچه OCR (تشخیص کاراکترهای نوری)، تلاش‌های گسترده برای به کار انداختن آن، فعالیت‌های بین‌المللی اخیر که رشد تحقیقات در تشخیص دست‌نویس و تجزیه و تحلیل اسناد را برانگیخته است، خلاصه‌ای کوتاه از موضوعات در فصول دیگر مورد بحث قرار گیرد و فهرستی از منابع مرتبط ارائه شود. 1.1 تولید و شناخت شخصیت ها اکثر مردم در چند سال اول تحصیل خواندن و نوشتن را یاد می گیرند. زمانی که از دوران کودکی بزرگ شده‌اند، مهارت‌های خواندن و نوشتن بسیار خوبی را کسب کرده‌اند، از جمله توانایی خواندن بیشتر متون، خواه با فونت‌ها و سبک‌های مختلف چاپ شده باشند، یا با دست نوشته شده باشند یا با دست نوشته‌ای. اکثر مردم در خواندن مطالب زیر مشکلی ندارند: چاپ های سبک یا چاپ های سنگین. چاپ وارونه؛ تبلیغات در سبک فونت های فانتزی؛ شخصیت هایی با زیور آلات گلدار و قسمت های گم شده؛ و حتی شخصیت هایی با تزئینات خنده دار، علائم سرگردان، قطعات شکسته یا تکه تکه شده. کلمات غلط املایی؛ و طرح های هنری و فیگوراتیو. گاهی اوقات، شخصیت ها و کلمات ممکن است نسبتاً تحریف شده به نظر برسند و با این حال، بر اساس تجربه و زمینه، اکثر مردم هنوز هم می توانند آنها را کشف کنند. برعکس، علیرغم بیش از پنج دهه تحقیق فشرده، مهارت خواندن کامپیوتر هنوز بسیار کمتر از انسان است

 

ادامه ...

This chapter presents an overview of the problems associated with character recognition. It includes a brief description of the history of OCR (optical character recognition), the extensive efforts involved to make it work, the recent international activities that have stimulated the growth of research in handwriting recognition and document analysis, a short summary of the topics to be discussed in the other chapters, and a list of relevant references. 1.1 GENERATION AND RECOGNITION OF CHARACTERS Most people learn to read and write during their first few years of education. By the time they have grown out of childhood, they have already acquired very good reading and writing skills, including the ability to read most texts, whether they are printed in different fonts and styles, or handwritten neatly or sloppily. Most people have no problem in reading the following: light prints or heavy prints; upside down prints; advertisements in fancy font styles; characters with flowery ornaments and missing parts; and even characters with funny decorations, stray marks, broken, or fragmented parts; misspelled words; and artistic and figurative designs. At times, the characters and words may appear rather distorted and yet, by experience and by context, most people can still figure them out. On the contrary, despite more than five decades of intensive research, the reading skill of the computer is still way behind that of human

ادامه ...

CONTENTS Preface xiii Acknowledgments xvii List of Figures xix List of Tables xxvii Acronyms xxix 1 Introduction: Character Recognition, Evolution, and Development 1 1.1 Generation and Recognition of Characters 1 1.2 History of OCR 2 1.3 Development of New Techniques 3 1.4 Recent Trends and Movements 3 1.5 Organization of the Remaining Chapters 3 References 4 2 Tools for Image Preprocessing 5 2.1 Generic Form-Processing System 5 2.2 A Stroke Model for Complex Background Elimination 8 vii viii CONTENTS 2.2.1 Global Gray Level Thresholding 9 2.2.2 Local Gray Level Thresholding 11 2.2.3 Local Feature Thresholding—Stroke-Based Model 12 2.2.4 Choosing the Most Efficient Character Extraction Method 15 2.2.5 Cleaning Up Form Items Using Stroke-Based Model 19 2.3 A Scale-Space Approach for Visual Data Extraction 21 2.3.1 Image Regularization 22 2.3.2 Data Extraction 24 2.3.3 Concluding Remarks 29 2.4 Data Preprocessing 30 2.4.1 Smoothing and Noise Removal 30 2.4.2 Skew Detection and Correction 32 2.4.3 Slant Correction 34 2.4.4 Character Normalization 36 2.4.5 Contour Tracing/Analysis 41 2.4.6 Thinning 45 2.5 Chapter Summary 50 References 51 3 Feature Extraction, Selection, and Creation 54 3.1 Feature Extraction 54 3.1.1 Moments 55 3.1.2 Histogram 58 3.1.3 Direction Features 59 3.1.4 Image Registration 64 3.1.5 Hough Transform 68 3.1.6 Line-Based Representation 70 3.1.7 Fourier Descriptors 73 3.1.8 Shape Approximation 76 3.1.9 Topological Features 78 3.1.10 Linear Transforms 79 3.1.11 Kernels 86 3.2 Feature Selection for Pattern Classification 90 3.2.1 Review of Feature Selection Methods 90 3.3 Feature Creation for Pattern Classification 104 3.3.1 Categories of Feature Creation 104 3.3.2 Review of Feature Creation Methods 105 3.3.3 Future Trends 118 CONTENTS ix 3.4 Chapter Summary 120 References 120 4 Pattern Classification Methods 129 4.1 Overview of Classification Methods 129 4.2 Statistical Methods 131 4.2.1 Bayes Decision Theory 131 4.2.2 Parametric Methods 132 4.2.3 Nonparametric Methods 138 4.3 Artificial Neural Networks 142 4.3.1 Single-Layer Neural Network 144 4.3.2 Multilayer Perceptron 148 4.3.3 Radial Basis Function Network 152 4.3.4 Polynomial Network 155 4.3.5 Unsupervised Learning 156 4.3.6 Learning Vector Quantization 160 4.4 Support Vector Machines 162 4.4.1 Maximal Margin Classifier 163 4.4.2 Soft Margin and Kernels 165 4.4.3 Implementation Issues 166 4.5 Structural Pattern Recognition 171 4.5.1 Attributed String Matching 172 4.5.2 Attributed Graph Matching 174 4.6 Combining Multiple Classifiers 179 4.6.1 Problem Formulation 180 4.6.2 Combining Discrete Outputs 181 4.6.3 Combining Continuous Outputs 183 4.6.4 Dynamic Classifier Selection 190 4.6.5 Ensemble Generation 190 4.7 A Concrete Example 194 4.8 Chapter Summary 197 References 197 5 Word and String Recognition 204 5.1 Introduction 204 5.2 Character Segmentation 206 5.2.1 Overview of Dissection Techniques 207 5.2.2 Segmentation of Handwritten Digits 210 x CONTENTS 5.3 Classification-Based String Recognition 214 5.3.1 String Classification Model 214 5.3.2 Classifier Design for String Recognition 220 5.3.3 Search Strategies 227 5.3.4 Strategies for Large Vocabulary 234 5.4 HMM-Based Recognition 237 5.4.1 Introduction to HMMs 237 5.4.2 Theory and Implementation 238 5.4.3 Application of HMMs to Text Recognition 243 5.4.4 Implementation Issues 244 5.4.5 Techniques for Improving HMMs’ Performance 247 5.4.6 Summary to HMM-Based Recognition 250 5.5 Holistic Methods for Handwritten Word Recognition 250 5.5.1 Introduction to Holistic Methods 251 5.5.2 Overview of Holistic Methods 255 5.5.3 Summary to Holistic Methods 256 5.6 Chapter Summary 256 References 257 6 Case Studies 263 6.1 Automatically Generating Pattern Recognizers with Evolutionary Computation 263 6.1.1 Motivation 264 6.1.2 Introduction 264 6.1.3 Hunters and Prey 266 6.1.4 Genetic Algorithm 271 6.1.5 Experiments 272 6.1.6 Analysis 280 6.1.7 Future Directions 281 6.2 Offline Handwritten Chinese Character Recognition 282 6.2.1 Related Works 283 6.2.2 System Overview 285 6.2.3 Character Normalization 286 6.2.4 Direction Feature Extraction 289 6.2.5 Classification Methods 293 6.2.6 Experiments 293 6.2.7 Concluding Remarks 301 CONTENTS xi 6.3 Segmentation and Recognition of Handwritten Dates on Canadian Bank Cheques 301 6.3.1 Introduction 302 6.3.2 System Architecture 303 6.3.3 Date Image Segmentation 303 6.3.4 Date Image Recognition 308 6.3.5 Experimental Results 315 6.3.6 Concluding Remarks 317 References 317 Index 321

ادامه ...
برای ارسال نظر لطفا وارد شوید یا ثبت نام کنید
ادامه ...
پشتیبانی محصول

۱- در صورت داشتن هرگونه مشکلی در پرداخت، لطفا با پشتیبانی تلگرام در ارتباط باشید.

۲- برای خرید محصولات لطفا به شماره محصول و عنوان دقت کنید.

۳- شما می توانید فایلها را روی نرم افزارهای مختلف اجرا کنید(هیچگونه کد یا قفلی روی فایلها وجود ندارد).

۴- بعد از خرید، محصول مورد نظر از صفحه محصول قابل دانلود خواهد بود همچنین به ایمیل شما ارسال می شود.

۵- در صورت وجود هر مشکلی در فرایند خرید با تماس بگیرید.